992 resultados para LASER DAMAGE
Resumo:
This paper introduces a statistical mesomechanical approach to the evolution of damage. A self-closed formulation of the damage evolution is derived.
Resumo:
The peripheries of circular foils of 30 mm in diameter and 0.1 mm thick are fixed while their surfaces are subjected to a long pulsed laser over a central region that may vary from 2 mm to 6 mm in diameter. Failure is observed and classified into three stages; they are referred to as thermal bulging, localized shear deformation, and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. Such a phenomenon can be expected to occur for a laser intensity threshold value of about 0.61 x 10(6) W/cm(2) beyond which local melting of the material begins to take place.
Resumo:
In this paper, a dynamic damage model in ductile solids under the application of a dynamic mean tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage process under intense dynamic loading (strain rates epsilon greater than or equal to 10(3) s(-1)). The evolution equation of the ductile void has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process in LY12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair agreement between computed and experimental results is obtained. Numerical analysis shows that the influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates.
Resumo:
A new kind of failure induced by long pulsed laser, named as reverse plugging effect (RPE), was experimentally observed in thin foil of brass. The whole failure process can be divided into three stages, namely thermal reverse bulging, shear deformation localization and reverse perforation. In this paper, a description of experimental and theoretical study on this newly discovered phenomenon is presented in detail.
Resumo:
The nucleation of microdamage under dynamic loading was investigated through planar impact experiments accomplished with a light gas gun. The microscopic observation of recovered and sectioned specimens showed that microcracks were nucleated only by cracking of brittle particles inside material. However, for comparison the in situ static tensile tests on the same material conducted with a scanning electron microscope showed that the microcracks were nucleated by many forms those were fracture of ductile matrix, debonding particles from matrix and cracking of brittle particles. The quantitative metallographic observations of the specimens subjected to impact loading showed that most of the cracked particles were situated on grain boundaries of the aluminium matrix. These facts suggested the concept of critical size and incubation time of submicroscopic cavities in the dynamic case and the mechanism of embryo-damage induced nucleation by fracture of brittle particles in the aluminium alloy under impact loading was proposed.
Resumo:
A void growth relations for ductile porous materials under intense dynamic general loading condition is presented. The mathematical model includes the influence of inertial effects, material rate sensitivity, as well as the contribution of void surface energy and material work-hardening. Numerical analysis shows that inertia appears to resist the growth of voids. The inertial effects increase quickly with the loading rates. The theoretical analysis suggests that the inertial effects cannot be neglected at high loading rates. Plate-impact tests of aluminum alloy are performed with light gas gun. The processes of dynamic damage in aluminum alloy are successfully simulated with a finite-difference dynamic code in which the theoretical model presented in this paper is incorporated.
Resumo:
A model of dynamical process and stochastic jump has been put forward to study the pattern evolution in damage-fracture. According to the final states of evolution processes, the evolution modes can be classified as globally stable modes (GS modes) and evolution induced catastrophic modes (ElC modes); the latter are responsible for fracture. A statistical description is introduced to clarify the pattern evolution in this paper. It is indicated that the appearance of fracture in disordered materials should be depicted by probability distribution function.