997 resultados para Lógicas multi-valoradas
Resumo:
This paper presents a novel architecture for optimizing the HTTP-based multimedia delivery in multi-user mobile networks. This proposal combines the usual client-driven dynamic adaptation scheme DASH-3GPP with network-assisted adaptation capabilities, in order to maximize the overall Quality of Experience. The foundation of this combined adaptation scheme is based on two state of the art technologies. On one hand, adaptive HTTP streaming with multi-layer encoding allows efficient media delivery and improves the experienced media quality in highly dynamic channels. Additionally, it enables the possibility to implement network-level adaptations for better coping with multi-user scenarios. On the other hand, mobile edge computing facilitates the deployment of mobile services close to the user. This approach brings new possibilities in modern and future mobile networks, such as close to zero delays and awareness of the radio status. The proposal in this paper introduces a novel element, denoted as Mobile Edge-DASH Adaptation Function, which combines all these advantages to support efficient media delivery in mobile multi-user scenarios. Furthermore, we evaluate the performance enhancements of this content- and user context-aware scheme through simulations of a mobile multimedia scenario.
Resumo:
In laser applications, the size of the focus spot can be reduced beyond the diffraction limit with a thin film of strong nonlinear optical Kerr effect. We present a concise theoretical simulation of the device. The origin of the super-resolution is found to be mainly from the reshaping effect due to the strongly nonlinear refraction mediated multi-interference inside the thin film. In addition, both diffraction and self-focusing effects have been explored and found negligible for highly refractive and ultrathin films in comparison with the reshaping effect. Finally, the theoretic model has been verified in experiments with single Ge2Sb2Te5 film and SiN/Si/SiN/Ge2Sb2Te2 multilayer structures. (c) 2006 American Institute of Physics.
Resumo:
Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16 degrees C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.
Resumo:
Quantum Computing is a relatively modern field which simulates quantum computation conditions. Moreover, it can be used to estimate which quasiparticles would endure better in a quantum environment. Topological Quantum Computing (TQC) is an approximation for reducing the quantum decoherence problem1, which is responsible for error appearance in the representation of information. This project tackles specific instances of TQC problems using MOEAs (Multi-objective Optimization Evolutionary Algorithms). A MOEA is a type of algorithm which will optimize two or more objectives of a problem simultaneously, using a population based approach. We have implemented MOEAs that use probabilistic procedures found in EDAs (Estimation of Distribution Algorithms), since in general, EDAs have found better solutions than ordinary EAs (Evolutionary Algorithms), even though they are more costly. Both, EDAs and MOEAs are population-based algorithms. The objective of this project was to use a multi-objective approach in order to find good solutions for several instances of a TQC problem. In particular, the objectives considered in the project were the error approximation and the length of a solution. The tool we used to solve the instances of the problem was the multi-objective framework PISA. Because PISA has not too much documentation available, we had to go through a process of reverse-engineering of the framework to understand its modules and the way they communicate with each other. Once its functioning was understood, we began working on a module dedicated to the braid problem. Finally, we submitted this module to an exhaustive experimentation phase and collected results.
Resumo:
179 p.