986 resultados para Kim Sterelny


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB, can also be engineered by carefully controlling the V/III ratio and catalyst size. © 2011 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate vertical and defect-free growth of GaAs nanowires on Si (111) substrates via a vapor-liquid-solid (VLS) growth mechanism with Au catalysts by metal-organic chemical vapor deposition (MOCVD). By using annealed thin GaAs buffer layers on the surface of Si substrates, most nanowires are grown on the substrates straight, following (111) direction; by using two temperature growth, the nanowires were grown free from structural defects, such as twin defects and stacking faults. Systematic experiments about buffer layers indicate that V/III ratio of precursor and growth temperature can affect the morphology and quality of the buffer layers. Especially, heterostructural buffer layers grown with different V/III ratios and temperatures and in-situ post-annealing step are very helpful to grow well arranged, vertical GaAs nanowires on Si substrates. The initial nanowires having some structural defects can be defect-free by two-temperature growth mode with improved optical property, which shows us positive possibility for optoelectronic device application. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth of Au-catalyzed InP nanowires (NWs) by metalorganic chemical vapor deposition (MOCVD) has been studied in the temperature range of 400-510 °C and V/III ratio of 44-700. We demonstrate that minimal tapering of InP NWs can be achieved at 400 °C and V/III ratio of 350. Zinc-blende (ZB) or wurtzite (WZ) NWs is obtained depending on the growth conditions. 4K microphotoluminescence (μ-PL) studies show that emission energy is blue-shifted as growth temperature increases. By changing these growth parameters, one can tune the emission wavelength of InP NWs which is attractive for applications in developing novel optoelectronic devices. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of growth temperature and V/III ratio on the morphology and crystallographic phases of InP nanowires that are grown by metal organic chemical vapour deposition have been studied. We show that higher growth temperatures or higher V/III ratios promote the formation of wurtzite nanowires while zinc-blende nanowires are favourableat lower growth temperatures and lower V/III ratios. A schematic map of distribution of zinc-blende and wurtzite structures has been developed in the range of growth temperatures (400-510 °C) and V/III ratios (44 to 700) investigated in this study. © 2010 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaAs and InP based nanowires were grown epitaxially on GaAs or InP (111)B substrates by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters for GaAs and InP nanowires on the crystal quality were studied in detail. We demonstrated the ability to obtain defect-free GaAs nanowires via either two-temperature procedure, or by controlling V/III ratio or growth rate. The crystal structure of InP nanowires, ie, WZ or ZB, can also be engineered by just controlling the V/III ratio. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

InP and GaAs based nanowires were grown epitaxially on InP or GaAs (111)B substrates by metalorganic chemical vapor deposition via vapor-liquid-solid (VLS) mechanism. In this report, I will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters for InP and GaAs nanowires on the crystal quality have been studied in detail. We demonstrated the ability to obtain defect-free GaAs nanowires and control the crystal structure of InP nanowires, ie, WZ or ZB, by choosing a combination of growth parameters, such as temperature, V/III ratio and nanowire diameter. © 2009 IEEE NANO Organizers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaAs and InP based nanowires were grown epitaxially on GaAs or InP (111)B substrates by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this talk, I will give an overview of nanowire research activities in our group. Especially, the effects of growth parameters for GaAs and InP nanowires on the crystal quality have been studied in detail. We demonstrated the ability to obtain defect-free GaAs nanowires and control the crystal structure of InP nanowires, ie, WZ or ZB, by choosing a combination of growth parameters, such as temperature, V/III ratio and nanowire diameter. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaAs and InP based nanowires were grown epitaxially on GaAs or InP (111)B substrates by MOCVD via VLS mechanism. In this paper, I will give an overview of nanowire research activities in our group. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The movement of Au catalysts during growth of InAs on GaAs nanowires has been carefully investigated by transmission electron microscopy. It has been found that Au catalysts preferentially stay on { 112 } B GaAs sidewalls. Since a {112} surface is composed of a {111} facet and a {002} facet and since {111} facets are polar facets for the zinc-blende structure, this crystallographic preference is attributed to the different interface energies caused by the different polar facets. We anticipate that these observations will be useful for the design of nanowire heterostructure based devices. © 2009 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate how to tailor the structural, crystallographic and optical properties of GaAs nanowires. Nanowires were grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. A high arsine flow rate, that is, a high ratio of group V to group III precursors, imparts significant advantages. It dramatically reduces planar crystallographic defects and reduces intrinsic carbon dopant incorporation. Increasing V/III ratio further, however, instigates nanowire kinking and increases nanowire tapering. By choosing an intermediate V/III ratio we achieve uniform, vertically aligned GaAs nanowires, free of planar crystallographic defects, with excellent optical properties and high purity. These findings will greatly assist the development of future GaAs nanowire-based electronic and optoelectronic devices, and are expected to be more broadly relevant to the rational synthesis of other III-V nanowires. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and morphological characteristics of InAs/GaAs radial nanowire heterostructures were investigated using transmission electron microscopy. It has been found that the radial growth of InAs was preferentially initiated on the { 112 } A sidewalls of GaAs nanowires. This preferential deposition leads to extraordinarily asymmetric InAs/GaAs radial nanowire heterostructures. Such formation of radial nanowire heterostructures provides an opportunity to engineer hierarchical nanostructures, which further widens the potential applications of semiconductor nanostructures. © 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To observe the axial growth behavior of InAs on GaAs nanowires, InAs was grown for different growth durations on GaAs nanowires using Au nanoparticles. Through transmission electron microscopy, we have observed the following evolution steps for the InAs growth. (1) In the initial stages of the InAs growth, InAs clusters into a wedge shape preferentially at an edge of the Au/GaAs interface by minimizing Au/InAs interfacial area; (2) with further growth of InAs, the Au particle moves sidewards and then downwards by preserving an interface with GaAs nanowire sidewalls. The lower interfacial energy of Au/GaAs than that of Au/In As is attributed to be the reason for such Au movement. This downward movement of the Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and with further supply of In and As vapor reactants, the Au nanoparticle assists the formation of InAs branches. These observations give some insights into vapor-liquid-solid growth and the formation of kinks in nanowire heterostructures. © 2008 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we demonstrate the key issues of axial nanowire heterostructures, such as, the fundamental criteria for formation and failure of axial nanowire heterostructures via vapor-liquid-solid mechanism and lateral misfit strain relaxation in these structures. We show the failure of axial nanowire heterostructures by growing InAs axially on GaAs nanowires, and the lateral misfit strain relaxation by axial growth of GaSb on GaAs nanowires. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate how growth parameters may be chosen to obtain high quality GaAs nanowires suitable for optoelectronic device applications. Growth temperature and precursor flows have a significant effect on the morphology, crystallographic quality, intrinsic doping and optical properties of the resulting nanowires. Significantly, we find that low growth temperature and high arsine flow rate improve nanowire optical properties, reduce carbon impurity incorporation and drastically reduce planar crystallographic defects. Additionally, cladding the GaAs nanowire cores in an AlGaAs shell enhances emission efficiency. These high quality nanowires should create new opportunities for optoelectronic devices. © 2008 IEEE.