958 resultados para Kalman filter stability
Resumo:
The study of stability problems is relevant to the study of structure of a physical system. It 1S particularly important when it is not possible to probe into its interior and obtain information on its structure by a direct method. The thesis states about stability theory that has become of dominant importance in the study of dynamical systems. and has many applications in basic fields like meteorology, oceanography, astrophysics and geophysics- to mention few of them. The definition of stability was found useful 1n many situations, but inadequate in many others so that a host of other important concepts have been introduced in past many years which are more or less related to the first definition and to the common sense meaning of stability. In recent years the theoretical developments in the studies of instabilities and turbulence have been as profound as the developments in experimental methods. The study here Points to a new direction for stability studies based on Lagrangian formulation instead of the Hamiltonian formulation used by other authors.
Resumo:
The coastal and nearshore areas have played vital role in the trade and economic development of coastal nations since ancient times. In recent years, the demands for utilization of these areas have increased for purposes of navigation, setting up of offshore structures for oil industry, exploitation of the available fishery and mineral resources, and to provide recreational facilities along the coast as a part of the coastal zone management. It is in this context the studies on nearshore processes receive greater priorities. Stability of beaches is controlled by the interaction of various physical parameters such as winds, waves, currents, tides and the nature and constituents of the beaches. The results of studies carried out by the author on the dynamical effects of these environmental parameters on the shoreline processes along the beaches around Cochin are presented in this thesis. The section of the coast investigated is about 57 km of shore from Azhikode to Anthakaranazhi situated on the central Kerala coast. Four regions namely Narakkal, Malipuram, Fort Cochin and Anthakaranazhi were chosen for detailed study
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Assessment of Convective Activity Using Stability Indices as Inferred from Radiosonde and MODIS Data
Resumo:
The combined use of both radiosonde data and three-dimensional satellite derived data over ocean and land is useful for a better understanding of atmospheric thermodynamics. Here, an attempt is made to study the ther-modynamic structure of convective atmosphere during pre-monsoon season over southwest peninsular India utilizing satellite derived data and radiosonde data. The stability indices were computed for the selected stations over southwest peninsular India viz: Thiruvananthapuram and Cochin, using the radiosonde data for five pre- monsoon seasons. The stability indices studied for the region are Showalter Index (SI), K Index (KI), Lifted In-dex (LI), Total Totals Index (TTI), Humidity Index (HI), Deep Convective Index (DCI) and thermodynamic pa-rameters such as Convective Available Potential Energy (CAPE) and Convective Inhibition Energy (CINE). The traditional Showalter Index has been modified to incorporate the thermodynamics over tropical region. MODIS data over South Peninsular India is also used for the study. When there is a convective system over south penin-sular India, the value of LI over the region is less than −4. On the other hand, the region where LI is more than 2 is comparatively stable without any convection. Similarly, when KI values are in the range 35 to 40, there is a possibility for convection. The threshold value for TTI is found to be between 50 and 55. Further, we found that prior to convection, dry bulb temperature at 1000, 850, 700 and 500 hPa is minimum and the dew point tem-perature is a maximum, which leads to increase in relative humidity. The total column water vapor is maximum in the convective region and minimum in the stable region. The threshold values for the different stability indices are found to be agreeing with that reported in literature.
Resumo:
Residue Number System (RNS) based Finite Impulse Response (FIR) digital filters and traditional FIR filters. This research is motivated by the importance of an efficient filter implementation for digital signal processing. The comparison is done in terms of speed and area requirement for various filter specifications. RNS based FIR filters operate more than three times faster and consumes only about 60% of the area than traditional filter when number of filter taps is more than 32. The area for RNS filter is increasing at a lesser rate than that for traditional resulting in lower power consumption. RNS is a nonweighted number system without carry propogation between different residue digits.This enables simultaneous parallel processing on all the digits resulting in high speed addition and multiplication in the RNS domain
Resumo:
The recent trends envisage multi-standard architectures as a promising solution for the future wireless transceivers to attain higher system capacities and data rates. The computationally intensive decimation filter plays an important role in channel selection for multi-mode systems. An efficient reconfigurable implementation is a key to achieve low power consumption. To this end, this paper presents a dual-mode Residue Number System (RNS) based decimation filter which can be programmed for WCDMA and 802.16e standards. Decimation is done using multistage, multirate finite impulse response (FIR) filters. These FIR filters implemented in RNS domain offers high speed because of its carry free operation on smaller residues in parallel channels. Also, the FIR filters exhibit programmability to a selected standard by reconfiguring the hardware architecture. The total area is increased only by 24% to include WiMAX compared to a single mode WCDMA transceiver. In each mode, the unused parts of the overall architecture is powered down and bypassed to attain power saving. The performance of the proposed decimation filter in terms of critical path delay and area are tabulated.
Resumo:
The recent trends envisage multi-standard architectures as a promising solution for the future wireless transceivers. The computationally intensive decimation filter plays an important role in channel selection for multi-mode systems. An efficient reconfigurable implementation is a key to achieve low power consumption. To this end, this paper presents a dual-mode Residue Number System (RNS) based decimation filter which can be programmed for WCDMA and 802.11a standards. Decimation is done using multistage, multirate finite impulse response (FIR) filters. These FIR filters implemented in RNS domain offers high speed because of its carry free operation on smaller residues in parallel channels. Also, the FIR filters exhibit programmability to a selected standard by reconfiguring the hardware architecture. The total area is increased only by 33% to include WLANa compared to a single mode WCDMA transceiver. In each mode, the unused parts of the overall architecture is powered down and bypassed to attain power saving. The performance of the proposed decimation filter in terms of critical path delay and area are tabulated
Resumo:
The demand for new telecommunication services requiring higher capacities, data rates and different operating modes have motivated the development of new generation multi-standard wireless transceivers. A multi-standard design often involves extensive system level analysis and architectural partitioning, typically requiring extensive calculations. In this research, a decimation filter design tool for wireless communication standards consisting of GSM, WCDMA, WLANa, WLANb, WLANg and WiMAX is developed in MATLAB® using GUIDE environment for visual analysis. The user can select a required wireless communication standard, and obtain the corresponding multistage decimation filter implementation using this toolbox. The toolbox helps the user or design engineer to perform a quick design and analysis of decimation filter for multiple standards without doing extensive calculation of the underlying methods.
Resumo:
With the increasing popularity of wireless network and its application, mobile ad-hoc networks (MANETS) emerged recently. MANET topology is highly dynamic in nature and nodes are highly mobile so that the rate of link failure is more in MANET. There is no central control over the nodes and the control is distributed among nodes and they can act as either router or source. MANTEs have been considered as isolated stand-alone network. Node can add or remove at any time and it is not infrastructure dependent. So at any time at any where the network can setup and a trouble free communication is possible. Due to more chances of link failures, collisions and transmission errors in MANET, the maintenance of network became costly. As per the study more frequent link failures became an important aspect of diminishing the performance of the network and also it is not predictable. The main objective of this paper is to study the route instability in AODV protocol and suggest a solution for improvement. This paper proposes a new approach to reduce the route failure by storing the alternate route in the intermediate nodes. In this algorithm intermediate nodes are also involved in the route discovery process. This reduces the route establishment overhead as well as the time to find the reroute when a link failure occurs.
Resumo:
The characteristics and stability of natural actomyosin (NAM) from rohu (Labeo rohita), catla (Catla catla) and mrigal (Cirrhinus mrigala) were investigated. The total extractable actomyosin (AM) was higher (7.60mgml−1) in the case of rohu compared with that from catla and mrigal (5mgml−1). Although the specific AM ATPase activity was similar (0.43–0.5 μmolPmin−1 mgP−1) among the three species, the total ATPase activity was lower in mrigal (25 μmol g−1 meat) compared with the other species (37 μmol g−1 meat). The inactivation rate constants (kd) of AM Ca ATPase activity showed differences in the stabilities of actomyosin among these fish, the actomyosin from catla being least stable. The NAM from these species was stable up to 20 ◦C at pH 7.0. Catla AM became unstable at 30 ◦C, while rohu and mrigal AM could withstand up to 45 ◦C. The thermal denaturation with respect to solubility, turbidity, ATPase activity, sulphhydryl group and surface hydrophobicity showed noticeable changes at around these temperatures
Resumo:
The paper presents a compact planar Ultra Wide Band ¯lter employing folded stepped impedance resonators with series capacitors and dumb bell shaped defected ground structures. An interdigital quarter wavelength coupled line is used for achieving the band pass characteristics. The transmission zeros are produced by stepped impedance resonators. The ¯lter has steep roll o® rate and good attenuation in its lower and upper stop bands, contributed by the series capacitor and defected ground structures respectively.
Resumo:
The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability
Resumo:
The paper summarizes the design and implementation of a quadratic edge detection filter, based on Volterra series, for enhancing calcifications in mammograms. The proposed filter can account for much of the polynomial nonlinearities inherent in the input mammogram image and can replace the conventional edge detectors like Laplacian, gaussian etc. The filter gives rise to improved visualization and early detection of microcalcifications, which if left undetected, can lead to breast cancer. The performance of the filter is analyzed and found superior to conventional spatial edge detectors