994 resultados para K-bonacci constant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the electrical resistivity of the chalcogenide glasses Ge15Te85-x has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cost effective and low temperature synthesis methods namely solution combustion and hydrothermal methods were used to prepare chromium incorporated nanocrystalline zinc ferrites. The effect of incorporation of low concentration Cr3+ ions on the structural, morphological, magnetic and transport properties of the zinc ferrite compounds were investigated. The crystalline nature and size variation with chromium content were valid from powder x-ray diffraction. Particles size and crystallite size variation were valid from scanning electron microscopy and transmission electron microscopy respectively. With the increase in chromium incorporation, the crystallite and particles sizes were decreased. Fourier transform infrared spectroscopy (FTIR) studies confirmed the presence of strong metal-oxygen bonds. The elastic properties of the materials in both the methods were estimated by FTIR studies. Magnetic properties namely saturation magentization, remanent magnetization and coercivity values were decreased with increase in Cr3+ ions concentration. The dielectric properties of the samples decreased with increase in the Cr3+ ions. The dielectric constant was observed to be of the order of 10(6) at low frequency and almost 1 at higher frequency range. The activation energy estimated using Arrhenius plots was of the order of 0.182 eV and 0.368 eV respectively for the compounds prepared by solution combustion and hydrothermal methods. The emission spectra of the samples excited at 344 nm were reported using photoluminescence (PL) spectroscopy. Further, the approximate energy band gap(E-g) was estimated from PL studies. The E-g of the materials were lie in the range of 2.11-1.98 eV. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zn1-xMgxO ( <= x <= 0.1) ceramics were fabricated by conventional solid-state reaction of co-precipitated zinc oxide and magnesium hydroxide nanoparticles. Structural and morphological properties of the fabricated ceramics were studied using X-ray diffraction and scanning electron microscopic analysis. The dielectric measurements of the ceramics were carried out as a function of frequency and temperature respectively. Interestingly, Mg doped ZnO (MZO) samples exhibited colossal dielectric response (similar to 1 x 10(4) at 1 kHz) with Debye like relaxation. The detailed dielectric studies and thermal analyses showed that the unusual dielectric response of the samples were originated from the defected grain and grain boundary (GB) conductivity relaxations due to the absorbed atmospheric water vapor (moisture). Impedance spectroscopy was employed to determine the defected grain and GB resistances, capacitances and which supported Maxwell-Wagner type relaxation phenomena. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal decomposition studies of 3-carene, a bio-fuel, have been carried out behind the reflected shock wave in a single pulse shock tube for temperature ranging from 920 K to 1220 K. The observed products in thermal decomposition of 3-carene are acetylene, allene, butadiene, isoprene, cyclopentadiene, hexatriene, benzene, toluene and p-xylene. The overall rate constant for 3-carene decomposition was found to be k/s(-1) = 10((9.95 +/- 0.54)) exp(-40.88 +/- 2.71 kcal mol(-1) /RT). Ab-initio theoretical calculations were carried out to find the minimum energy pathway that could explain the formation of the observed products in the thermal decomposition experiments. These calculations were carried out at B3LYP/6-311 + G(d,p) and G3 level of theories. A kinetic mechanism explaining the observed products in the thermal decomposition experiments has been derived. It is concluded that the linear hydrocarbons are the primary products in the pyrolysis of 3-carene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress is inevitable during thin film growth. It is demonstrated here that the growth stress has a significant effect on the dielectric constant of high-k thin films. ZrO2 thin films were deposited on Ge by reactive direct current sputtering. Stress in these films was measured using in-situ curvature measurement tool. The growth stress was tuned from -2.8 to 0.1 GPa by controlling deposition rate. Dielectric permittivity of ZrO2 depends on temperature, phase, and stress. The correct combination of parameters-phase, texture, and stress-is shown to yield films with an equivalent oxide thickness of 8 angstrom. Growth stresses are shown to affect the dielectric constant both directly by affecting lattice parameter and indirectly through the effect on phase stability of ZrO2. (c) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0 <= y <= 0.15) in the perovskite structured LaxGdyBi1-xFeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of `La' content (x). The magnitude of dielectric constant (epsilon(r) increases progressively by increasing the `La' content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1-x(x+y)FeO3 exhibits highest remanent magnetization (M-r) of 0.18 emu/g and coercive magnetic field (H-c) of similar to 1 Tin the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBil (x+y)Fe03 and the role of doping elements, La3+, Gd3+ has been discussed. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the multiferroic and glassy behaviour of metal-organic framework (MOF) material (CH3)(2)NH2Co(CHOO)(3). The compound has perovskite-like architecture in which the metal-formate forms a framework. The organic cation (CH3)(2)NH2+ occupies the cavities in the formate framework in the framework via N-H center dot center dot center dot O hydrogen bonds. At room temperature, the organic cation is disordered and occupies three crystallographically equivalent positions. Upon cooling, the organic cation is ordered which leads to a structural phase transition at 155 K. The structural phase transition is associated with a para-ferroelectric phase transition and is revealed by dielectric and pyroelectric measurements. Further, a PE hysteresis loop below 155 K confirms the ferroelectric behaviour of the material. Analysis of dielectric data reveal large frequency dispersion in the values of dielectric constant and tan delta which signifies the presence of glassy dielectric behaviour. The material displays a antiferromagnetic ordering below 15 K which is attributed to the super-exchange interaction between Co2+ ions mediated via formate linkers. Interestingly, another magnetic transition is also found around 11 K. The peak of the transition shifts to lower temperature with increasing frequency, suggesting glassy magnetism in the sample. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary copper(Il) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. Cu(bpy)(L)](ClO4) (1) and Cu(dppz)(L)](C104) (2), where bpy is 2,2'-bipyridine (in 1) and dppz is dipyrido3,2-a:2',3'-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (K-b) of similar to 10(5) M-1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming (OH)-O-center dot radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 mu M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8 x 10(-4) eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 MU eV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.