957 resultados para Josef Pieper
Resumo:
Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1β. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases.
Resumo:
OBJECTIVES This study sought to assess the clinical safety and effectiveness of the Resolute zotarolimus-eluting stent (R-ZES) in patients with in-stent restenosis (ISR) from 2 large trials. BACKGROUND ISR treatment is associated with higher rates of subsequent cardiac events compared with treatment of de novo lesions. Although drug-eluting stents (DES) are an option, second-generation DES are largely untested in the treatment of ISR. METHODS A total of 3,489 patients were pooled from the RAC (RESOLUTE All Comers) trial and the RESOLUTE International (RINT) registry. Two-year clinical endpoints included clinically driven target lesion revascularization (TLR), target lesion failure (TLF), cardiac death (CD), target vessel myocardial infarction (TVMI), combined CD or TVMI (CD/TVMI), and Academic Research Consortium definite and probable stent thrombosis (ST). RESULTS Overall, 281 patients (8.1%) received an R-ZES for ISR. Two-year TLR and TLF rates were significantly higher in ISR patients than in non-ISR patients (TLR: 12.7% vs. 4.3%, p = 0.003; TLF: 17.4% vs. 9.4%, p = 0.007); however, the CD/TVMI rate was not (6.9% vs. 6.1%, p = 0.711). Seven ISR patients had ST. Two-year outcomes by ISR stent type were similar: bare-metal stent (BMS)-ISR TLR was 12.5% and TLF was 17.2%; DES-ISR TLR was 13.0% and TLF was 18.8%. CD/TVMI was 7.3% and 7.2% for BMS-ISR and DES-ISR, respectively. CONCLUSIONS Using R-ZES to treat ISR appears equally safe in BMS-ISR and DES-ISR, with CD/TVMI rates comparable to 2-year outcomes in other clinical trials. Although revascularization rates are still higher in ISR lesions, the R-ZES offers an effective alternative for treatment of BMS-ISR and DES-ISR. (Randomized, Two-Arm, Non-inferiority Study Comparing Endeavor-Resolute Stent With Abbot Xience-V Stent [RESOLUTE-AC]; NCT00617084; and RESOLUTE International Registry: Evaluation of the Resolute Zotarolimus-Eluting Stent System in a 'Real-World' Patient Population [RINT]; NCT00752128).
Resumo:
BACKGROUND Outcome data are limited in patients with ST-segment elevation acute myocardial infarction (STEMI) or other acute coronary syndromes (ACSs) who receive a drug-eluting stent (DES). Data suggest that first generation DES is associated with an increased risk of stent thrombosis when used in STEMI. Whether this observation persists with newer generation DES is unknown. The study objective was to analyze the two-year safety and effectiveness of Resolute™ zotarolimus-eluting stents (R-ZESs) implanted for STEMI, ACS without ST segment elevation (non-STEACS), and stable angina (SA). METHODS Data from the Resolute program (Resolute All Comers and Resolute International) were pooled and patients with R-ZES implantation were categorized by indication: STEMI (n=335), non-STEACS (n=1416), and SA (n=1260). RESULTS Mean age was 59.8±11.3 years (STEMI), 63.8±11.6 (non-STEACS), and 64.9±10.1 (SA). Fewer STEMI patients had diabetes (19.1% vs. 28.5% vs. 29.2%; P<0.001), prior MI (11.3% vs. 27.2% vs. 29.4%; P<0.001), or previous revascularization (11.3% vs. 27.9% vs. 37.6%; P<0.001). Two-year definite/probable stent thrombosis occurred in 2.4% (STEMI), 1.2% (non-STEACS) and 1.1% (SA) of patients with late/very late stent thrombosis (days 31-720) rates of 0.6% (STEMI and non-STEACS) and 0.4% (SA) (P=NS). The two-year mortality rate was 2.1% (STEMI), 4.8% (non-STEACS) and 3.7% (SA) (P=NS). Death or target vessel re-infarction occurred in 3.9% (STEMI), 8.7% (non-STEACS) and 7.3% (SA) (P=0.012). CONCLUSION R-ZES in STEMI and in other clinical presentations is effective and safe. Long term outcomes are favorable with an extremely rare incidence of late and very late stent thrombosis following R-ZES implantation across indications.
Resumo:
OBJECTIVES The aim of this study was to describe the process to obtain Food and Drug Administration (FDA) approval for the expanded indication for treatment with the Resolute zotarolimus-eluting stent (R-ZES) (Medtronic, Inc., Santa Rosa, California) in patients with coronary artery disease and diabetes. BACKGROUND The R-ZES is the first drug-eluting stent specifically indicated in the United States for percutaneous coronary intervention in patients with diabetes. METHODS We pooled patient-level data for 5,130 patients from the RESOLUTE Global Clinical Program. A performance goal prospectively determined in conjunction with the FDA was established as a rate of target vessel failure at 12 months of 14.5%. In addition to the FDA pre-specified cohort of less complex patients with diabetes (n = 878), we evaluated outcomes of the R-ZES in all 1,535 patients with diabetes compared with all 3,595 patients without diabetes at 2 years. RESULTS The 12-month rate of target vessel failure in the pre-specified diabetic cohort was 7.8% (upper 95% confidence interval: 9.51%), significantly lower than the performance goal of 14.5% (p < 0.001). After 2 years, the cumulative incidence of target lesion failure in patients with noninsulin-treated diabetes was comparable to that of patients without diabetes (8.0% vs. 7.1%). The higher risk insulin-treated population demonstrated a significantly higher target lesion failure rate (13.7%). In the whole population, including complex patients, rates of stent thrombosis were not significantly different between patients with and without diabetes (1.2% vs. 0.8%). CONCLUSIONS The R-ZES is safe and effective in patients with diabetes. Long-term clinical data of patients with noninsulin-treated diabetes are equivalent to patients without diabetes. Patients with insulin-treated diabetes remain a higher risk subset. (The Medtronic RESOLUTE Clinical Trial; NCT00248079; Randomized, Two-arm, Non-inferiority Study Comparing Endeavor-Resolute Stent With Abbot Xience-V Stent [RESOLUTE-AC]; NCT00617084; The Medtronic RESOLUTE US Clinical Trial (R-US); NCT00726453; RESOLUTE International Registry: Evaluation of the Resolute Zotarolimus-Eluting Stent System in a 'Real-World' Patient Population [R-Int]; NCT00752128; RESOLUTE Japan-The Clinical Evaluation of the MDT-4107 Drug-Eluting Coronary Stent [RJ]; NCT00927940).
The optimal lead insertion depth for esophageal ECG recordings with respect to atrial signal quality
Resumo:
BACKGROUND Diagnosing supraventricular arrhythmias by conventional long-term ECG can be cumbersome because of poor p-waves. Esophageal long-term electrocardiography (eECG) has an excellent sensitivity for atrial signals and may overcome this limitation. However, the optimal lead insertion depth (OLID) is not known. METHODS We registered eECGs at different lead insertion depths in 27 patients and analyzed 199,716 atrial complexes with respect to signal amplitude and slope. Correlation and regression analyses were used to find a criterion for OLID. RESULTS Atrial signal amplitudes and slopes significantly depend on lead insertion depth. OLID correlates with body height (rSpearman=0.71) and can be estimated by OLID [cm]=0.25*body height[cm]-7cm. At this insertion depth, we recorded the largest esophageal atrial signal amplitudes (1.27±0.86mV), which were much larger compared to conventional surface lead II (0.19±0.10mV, p<0.0001). CONCLUSION The OLID depends on body height and can be calculated by a simple regression formula.
Resumo:
Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases.
Resumo:
Introduction: Myotonia congenita (MC) is caused by congenital defects in the muscle chloride channel CLC-1. This study used muscle velocity recovery cycles (MVRCs) to investigate how membrane function is affected. Methods: MVRCs and responses to repetitive stimulation were compared between 18 patients with genetically confirmed MC (13 recessive, 7 dominant) and 30 age-matched normal controls. Results: MC patients exhibited increased early supernormality, but treatment with sodium channel blockers prevented this. After multiple conditioning stimuli, late supernormality was enhanced in all MC patients, indicating delayed repolarization. These abnormalities were similar between the MC subtypes, but recessive patients showed a greater drop in amplitude during repetitive stimulation. Discussion: MVRCs indicate that chloride conductance only becomes important when muscle fibers are depolarized. The differential responses to repetitive stimulation suggest that in dominant MC the affected chloride channels are activated by strong depolarization, consistent with a positive shift of the CLC-1 activation curve. © 2013 Wiley Periodicals, Inc.
Resumo:
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.
Resumo:
A dietary energy restriction to 49% of total energy requirements was conducted with Red Holstein cows for three weeks in mid-lactation. At the last day of the restriction phase, primary bovine mammary epithelial cells (pbMEC) of eight restriction (RF) and seven control-fed (CF) cows were extracted out of one litre of milk and cultured. In their third passage, an immune challenge with the most prevalent, heat-inactivated mastitis pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was conducted. Lactoferrin (LF) was determined on gene expression and protein level. An enzyme-linked immunosorbent assay (ELISA) was developed to determine LF in milk samples taken twice weekly throughout the animal trial, beginning on day 20 pp (post-partum) until day 150 pp, in cell culture total protein and in cell culture supernatant. Milk LF increased throughout the lactation and decreased significantly during the induced energy deficiency in the RF group. At the beginning of realimentation, LF concentration increased immediately in the RF group and reached higher levels than before the induced deficit following the upward trend seen in the CF group. Cell culture data revealed higher levels (up to sevenfold up-regulation in gene expression) and significant higher LF protein concentration in the RF compared to the CF group cells. A further emphasized effect was found in E. coli compared to S. aureus exposed cells. The general elevated LF levels in the RF pbMEC group and the further increase owing to the immune challenge indicate an unexpected memory ability of milk-extracted mammary cells that were transposed into in vitro conditions and even displayed in the third passage of cultivation. The study confirms the suitability of the non-invasive milk-extracted pbMEC culture model to monitor the influence of feeding experiments on immunological situations in vivo.
Resumo:
A study with 40 multiparous high yielding dairy cows was conducted to investigate the influence of an induced negative energy balance (NEB) on reproductive performance. Energy restriction of 49% was performed for 3 weeks beginning on oestrous cycle day 12 of first oestrous cycle after day 85 post partum (pp). From day 20 to day 150 pp animals were monitored for ovary activity three times weekly using rectal palpation and transrectal ultrasound scanning and were inseminated around day 150 pp. Additionally, milk progesterone and milk hydrocortisone were analyzed twice a week. Body condition score and body weight as well as blood glucose, plasma nonesterified fatty acids and plasma β-hydroxybutyrate were recorded weekly. According to oestrous cycle activity before (Period 1 = natural energy deficiency), during (Period 2) and after (Period 3) induced energy restriction animals were assigned to the following groups: Delayed first ovulation until day 45 pp, normal oestrous cycle, prolonged oestrous cycle and shortened oestrous cycle. Sporadic significances, but no clear effect of the metabolic state on reproductive performance could be found during Periods 1 and 2. Service success and conception rate were also not influenced. Our results demonstrate a remarkable adaptation of reproductive activity to metabolic challenges. Animals were able to compensate natural NEB in Period 1 as well as induced NEB (Period 2) for preventing metabolic disorders and maintaining reproductive activity. Therefore dietary energy availability had no effect on reproductive performance at more than 85 days in milk in the present study. To understand reproductive failures in dairy cows focus should be laid on genetic disposition of high yielding individuals that cope successful with metabolic challenges.