981 resultados para Isothermal Remanent Magnetization
Resumo:
With the aim of monitoring the dynamics of the Livingston Island ice cap, the Departament de Geodinàmica i Geofísica of the Universitat de Barcelona began ye a r ly surveys in the austral summer of 1994-95 on Johnsons Glacier. During this field campaign 10 shallow ice cores were sampled with a manual ve rtical ice-core drilling machine. The objectives were: i) to detect the tephra layer accumulated on the glacier surface, attributed to the 1970 Deception Island pyroclastic eruption, today interstratified; ii) to verify wheter this layer might serve as a reference level; iii) to measure the 1 3 7Cs radio-isotope concentration accumulated in the 1965 snow stratum; iv) to use the isochrone layer as a mean of verifying the age of the 1970 tephra layer; and, v) to calculate both the equilibrium line of the glacier and average mass balance over the last 28 years (1965-1993). The stratigr a p hy of the cores, their cumulative density curves and the isothermal ice temperatures recorded confi rm that Johnsons Glacier is a temperate glacier. Wi n d, solar radiation heating and liquid water are the main agents controlling the ve rtical and horizontal redistribution of the volcanic and cryoclastic particles that are sedimented and remain interstratified within the g l a c i e r. It is because of this redistribution that the 1970 tephra layer does not always serve as a ve ry good reference level. The position of the equilibrium line altitude (ELA) in 1993, obtained by the 1 3 7Cs spectrometric analysis, varies from about 200 m a.s.l. to 250 m a.s.l. This indicates a rising trend in the equilibrium line altitude from the beginning of the 1970s to the present day. The va rying slope orientation of Johnsons Glacier relative to the prevailing NE wind gives rise to large local differences in snow accumulation, which locally modifies the equilibrium line altitude. In the cores studied, 1 3 7Cs appears to be associated with the 1970 tephra laye r. This indicates an intense ablation episode throughout the sampled area (at least up to 330 m a.s.l), which probably occurred synchronically to the 1970 tephra deposition or later. A rough estimate of the specific mass balance reveals a considerable accumulation gradient related to the increase with altitude.
Resumo:
In this work, we propose a method for prospective motion correction in MRI using a novel image navigator module, which is triggered by a free induction decay (FID) navigator. Only when motion occurs, the image navigator is run and new positional information is obtained through image registration. The image navigator was specifically designed to match the impact on the magnetization and the acoustic noise of the host sequence. This detection-correction scheme was implemented for an MP-RAGE sequence and 5 healthy volunteers were scanned at 3T while performing various head movements. The correction performance was demonstrated through automated brain segmentation and an image quality index whose results are sensitive to motion artifacts.
Resumo:
The detailed in-vivo characterization of subcortical brain structures is essential not only to understand the basic organizational principles of the healthy brain but also for the study of the involvement of the basal ganglia in brain disorders. The particular tissue properties of basal ganglia - most importantly their high iron content, strongly affect the contrast of magnetic resonance imaging (MRI) images, hampering the accurate automated assessment of these regions. This technical challenge explains the substantial controversy in the literature about the magnitude, directionality and neurobiological interpretation of basal ganglia structural changes estimated from MRI and computational anatomy techniques. My scientific project addresses the pertinent need for accurate automated delineation of basal ganglia using two complementary strategies: ? Empirical testing of the utility of novel imaging protocols to provide superior contrast in the basal ganglia and to quantify brain tissue properties; ? Improvement of the algorithms for the reliable automated detection of basal ganglia and thalamus Previous research demonstrated that MRI protocols based on magnetization transfer (MT) saturation maps provide optimal grey-white matter contrast in subcortical structures compared with the widely used Tl-weighted (Tlw) images (Helms et al., 2009). Under the assumption of a direct impact of brain tissue properties on MR contrast my first study addressed the question of the mechanisms underlying the regional specificities effect of the basal ganglia. I used established whole-brain voxel-based methods to test for grey matter volume differences between MT and Tlw imaging protocols with an emphasis on subcortical structures. I applied a regression model to explain the observed grey matter differences from the regionally specific impact of brain tissue properties on the MR contrast. The results of my first project prompted further methodological developments to create adequate priors for the basal ganglia and thalamus allowing optimal automated delineation of these structures in a probabilistic tissue classification framework. I established a standardized workflow for manual labelling of the basal ganglia, thalamus and cerebellar dentate to create new tissue probability maps from quantitative MR maps featuring optimal grey-white matter contrast in subcortical areas. The validation step of the new tissue priors included a comparison of the classification performance with the existing probability maps. In my third project I continued investigating the factors impacting automated brain tissue classification that result in interpretational shortcomings when using Tlw MRI data in the framework of computational anatomy. While the intensity in Tlw images is predominantly
Resumo:
BACKGROUND AND PURPOSE: The alteration of brain maturation in preterm infants contributes to neurodevelopmental disabilities during childhood. Serial imaging allows understanding of the mechanisms leading to dysmaturation in the preterm brain. The purpose of the present study was to provide reference quantitative MR imaging measures across time in preterm infants, by using ADC, fractional anisotropy, and T1 maps obtained by using the magnetization-prepared dual rapid acquisition of gradient echo technique. MATERIALS AND METHODS: We included preterm neonates born at <30 weeks of gestational age without major brain lesions on early cranial sonography and performed 3 MRIs (3T) from birth to term-equivalent age. Multiple measurements (ADC, fractional anisotropy, and T1 relaxation) were performed on each examination in 12 defined white and gray matter ROIs. RESULTS: We acquired 107 MRIs (35 early, 33 intermediary, and 39 at term-equivalent age) in 39 cerebral low-risk preterm infants. Measures of T1 relaxation time showed a gradual and significant decrease with time in a region- and hemispheric-specific manner. ADC values showed a similar decline with time, but with more variability than T1 relaxation. An increase of fractional anisotropy values was observed in WM regions and inversely a decrease in the cortex. CONCLUSIONS: The gradual change with time reflects the progressive maturation of the cerebral microstructure in white and gray matter. Our study provides reference trajectories from 25 to 40 weeks of gestation of T1 relaxation, ADC, and fractional anisotropy values in low-risk preterm infants. We speculate that deviation thereof might reflect disturbed cerebral maturation; the correlation of this disturbed maturation with neurodevelopmental outcome remains to be addressed.
Resumo:
Cardiovascular disease is the leading cause of death worldwide. Within this subset, coronary artery disease (CAD) is the most prevalent. Magnetic resonance angiography (MRA) is an emerging technique that provides a safe, non-invasive way of assessing CAD progression. To generate contrast between tissues, MR images are weighted according to the magnetic properties of those tissues. In cardiac MRI, T2 contrast, which is governed by the rate of transverse signal loss, is often created through the use of a T2-Preparation module. T2-Preparation, or T2-Prep, is a magnetization preparation scheme used to improve blood/myocardium contrast in cardiac MRI. T2-Prep methods generally use a non-selective +90°, 180°, 180°, -90° train of radiofrequency (RF) pulses (or variant thereof), to tip magnetization into the transverse plane, allow it to evolve, and then to restore it to the longitudinal plane. A key feature in this process is the combination of a +90° and -90° RF pulse. By changing either one of these, a mismatch occurs between signal excitation and restoration. This feature can be exploited to provide additional spectral or spatial selectivity. In this work, both of these possibilities are explored. The first - spectral selectivity - has been examined as a method of improving fat saturation in coronary MRA. The second - spatial selectivity - has been examined as a means of reducing imaging time by decreasing the field of view, and as a method of reducing artefacts originating from the tissues surrounding the heart. Two additional applications, parallel imaging and self-navigation, are also presented. This thesis is thus composed of four sections. The first, "A Fat Signal Suppression for Coronary MRA at 3T using a Water-Selective Adiabatic T2-Preparation Technique", was originally published in the journal Magnetic Resonance in Medicine (MRM) with co-authors Ruud B. van Heeswijk and Matthias Stuber. The second, "Combined T2-Preparation and 2D Pencil Beam Inner Volume Selection", again with co-authors Ruud van Heeswijk and Matthias Stuber, was also published in the journal MRM. The third, "A cylindrical, inner volume selecting 2D-T2-Prep improves GRAPPA-accelerated image quality in MRA of the right coronary artery", written with co-authors Jerome Yerly and Matthias Stuber, has been submitted to the "Journal of Cardiovascular Magnetic Resonance", and the fourth, "Combined respiratory self-navigation and 'pencil-beam' 2D-T2 -Prep for free-breathing, whole-heart coronary MRA", with co¬authors Jerome Chaptinel, Giulia Ginami, Gabriele Bonanno, Simone Coppo, Ruud van Heeswijk, Davide Piccini, and Matthias Stuber, is undergoing internal review prior to submission to the journal MRM. -- Les maladies cardiovasculaires sont la cause principale de décès dans le monde : parmi celles-ci, les maladies coronariennes sont les plus répandues. L'angiographie par résonance magnétique (ARM) est une technique émergente qui fournit une manière sûre, non invasive d'évaluer la progression de la coronaropathie. Pour obtenir un contraste entre les tissus, les images d'IRM sont pondérées en fonction des propriétés magnétiques de ces tissus. En IRM cardiaque, le contraste en T2, qui est lié à la décroissance du signal transversal, est souvent créé grâce à l'utilisàtion d'un module de préparation T2. La préparation T2, ou T2-Prep, est un système de préparation de l'aimantation qui est utilisé pour améliorer le contraste entre le sang et le myocarde lors d'une IRM cardiaque. Les méthodes de T2-Prep utilisent généralement une série non-sélective d'impulsions de radiofréquence (RF), typiquement [+ 90°, 180°, 180°, -90°] ou une variante, qui bascule l'aimantation dans le plan transversal, lui permet d'évoluer, puis la restaure dans le plan longitudinal. Un élément clé de ce processus est la combinaison des impulsions RF de +90° et -90°. En changeant l'une ou l'autre des impulsions, un décalage se produit entre l'excitation du signal et de la restauration. Cette fonction peut être exploitée pour fournir une sélectivité spectrale ou spatiale. Dans cette thèse, les deux possibilités sont explorées. La première - la sélectivité spectrale - a été examinée comme une méthode d'améliorer la saturation de la graisse dans l'IRM coronarienne. La deuxième - la sélectivité spatiale - a été étudiée comme un moyen de réduire le temps d'imagerie en diminuant le champ de vue, et comme une méthode de réduction des artefacts provenant des tissus entourant le coeur. Deux applications supplémentaires, l'imagerie parallèle et la self-navigation, sont également présentées. Cette thèse est ainsi composée de quatre sections. La première, "A Fat Signal Suppression for Coronary MRA at 3T using a Water-Selective Adiabatic T2-Preparation Technique", a été publiée dans la revue médicale Magnetic Resonance .in Medicine (MRM) avec les co-auteurs Ruud B. van Heeswijk et Matthias Stuber. La deuxième, Combined T2-Preparation and 2D Pencil Beam Inner Volume Selection", encore une fois avec les co-auteurs Ruud van Heeswijk et Matthias Stuber, a également été publiée dans le journal MRM. La troisième, "A cylindrical, inner volume selecting 2D-T2-Prep improves GRAPPA- accelerated image quality in MRA of the right coronary artery", écrite avec les co-auteurs Jérôme Yerly et Matthias Stuber, a été présentée au "Journal of Cardiovascular Magnetic Resonance", et la quatrième, "Combined respiratory self-navigation and 'pencil-beam' 2D-T2 -Prep for free-breathing, whole-heart coronary MRA", avec les co-auteurs Jérôme Chaptinel, Giulia Ginami, Gabriele Bonanno , Simone Coppo, Ruud van Heeswijk, Davide Piccini, et Matthias Stuber, subit un examen interne avant la soumission à la revue MRM.
Resumo:
In this work, a computer program called Thermal Kinetics was implemented to simulate thermal analysis experiments by numerical integration of the kinetics equations. The computer program was tested in two different examples: non-isothermal transformation of a Cu-Al alloy and non-isothermal decomposition of calcium oxalate monohydrated. In spite of the rather crude approximations of the model, the simulated profiles are very similar to the experimental curves. Both, the dalpha /dt and the dalpha /dT profiles reproduce the experimental transition temperatures with an error smaller than 25%.
Resumo:
In this work AC magnetometer was developed and primary test measurements were performed for temperature range from 77 K up to 350 K in frequency range from 1 kHz up to 20 kHz. In the course of the present work dependencies of magnetization on temperature for Lao7Sr03Mni _yFeyO3 with y = 0.15, 0.20, 0.25 were obtained in DC magnetic field using SQUID magnetometer and in AC magnetic field using the developed AC magnetometer. Lai.XSrXMnO3 (LSMO) compounds belong to the class of Mn perovskites, which demonstrate very high degree of spin polarization. These materials are of great importance for nowadays applications in spintronics, where spin polarized electron transport is used. Spin glass like behavior was found as a characteristic feature of these solid solutions with the freezing temperature in the range 65 — 210 K.
Resumo:
Using a Ginzburg-Landau model for the magnetic degrees of freedom with coupling to disorder, we demonstrate through simulations the existence of stripelike magnetic precursors recently observed in Co-Ni-Al alloys above the Curie temperature. We characterize these magnetic modulations by means of the temperature dependence of local magnetization distribution, magnetized volume fraction, and magnetic susceptibility. We also obtain a temperature-disorder strength phase diagram in which a magnetic tweed phase exists in a small region between the paramagnetic and dipolar phases.
Resumo:
Bioetanolin tuotanto kiinnostaa monissa maissa johtuen kansainvälisissä sopimuksissa määritellyistä ilmastotavoitteista. Työssä tutkittiin laboratorio-oloissa ioninvaihtohartsien ominaisuuksien ja erotuksen olosuhteiden vaikutusta rikkihapon ja glukoosin kromatografiseen erotukseen. Tehokkaimmaksi hartsiksi osoittautui polysulfonoitu mesohuokoinen vahva kationinvaihtohartsi Finex CS100C. CS100C:lla voitiin erottaa rikkihappoa ja glukoosia tehokkaimmin korkeissa 25 p-% ja 36 p-% glukoosi- ja rikkihappo-pitoisuuksissa. Lisäksi sillä havaittiin suurin tuotto simuloidussa liikkuvassa pedissä. Yhdessä kolonnissa suoritetuissa erotuskokeissa tutkittiin hartsien erotuskykyä rikkihapolle ja glukoosille sekä virtausnopeuden vaikutusta erotukseen lämpötilassa 22 °C. Saatujen tulosten pohjalta valittiin CS11GC, CS16GC ja CS100C tarkempaan isotermin määritykseen ja simulointiin hyvän erotuskyvyn sekä keskinäisten erojen takia. Adsorptioisotermit määritettiin kolonnikokein sekä 22 °C:n että 50 °C:n lämpötilassa. Isotermeistä havaittiin, että tasapaino kiinto- ja liuosfaasien välille saavutetaan rikkihapolla alhaisella 1 cm3/min virtausnopeudella varmemmin kuin suuremmalla 2,5 cm3/min virtausnopeudella. 50 °C:n lämpötilassa hapon ja glukoosin isotermit olivat jyrkempiä kuin 22 °C:n lämpötilassa. Määritettyihin hapon ja sokerin isotermeihin sovitettiin mallit, joiden parametreja käytettiin yksittäisen kolonnin simulointiin. Simuloinnissa oli estimoitavia parametreja yhdellä kolonnilla aineensiirtokertoimet sekä läpäisykäyristä määritetyt isotermiparametrit glukoosille sekä rikkihapolle ja SMB–erotuksessa vyöhykkeiden 2 ja 3 suhteelliset virtausnopeudet. Siirryttäessä lämpötilojen 22 °C ja 50 °C välillä hartsien parametrit muuttuivat sokerille täysin ja hapolle vain aineensiirtokertoimen osalta. CS100C oli tehokkain SMB–erotuksessa korkeimmalla 0,11 cm3/min tuottavuudella 95 %:n saannon saavuttamiseksi 95 % tuotepuhtaudella raffinaatissa ja ekstraktissa.
Resumo:
Phenil glycidyl ether (PGE), a monofunctional diluent, has been used in epoxy resins formulations in order to increase the toughness of the epoxy molded composite. In a systematic study concerning its influence in the cure kinetics of the epoxy resin, it was used in concentrations of 2,5; 5,0; 10 and 20% in relation to a diglycidyl ether bisphenol-A (DGEBA)/diamino diphenil-sulfone (DDS) base matrix. Dynamic and isothermal scanning analysis were carried out using a differential scanning calorimety (DSC) equipment. For all the concentrations of PGE, a n order kinetics was observed, with n varing between 0,35 -- 0,91 as a function of the increase in the PGE concentration.
Resumo:
The conversion of glycerol in supercritical water (SCW) was studied at 510-550 °C and a pressure of 350 bars using both a bed of inert and non-porous ZrO2 particles (hydrothermal experiments), and a bed of a 1% Ru/ZrO2 catalyst. Experiments were conducted with a glycerol concentration of 5 wt% in a continuous isothermal fixed-bed reactor at a residence time between 2 and 10 s. Hydrothermolysis of glycerol formed water-soluble products such as acetaldehyde, acetic acid, hydroxyacetone and acrolein, and gases like H2, CO and CO2. The catalyst enhanced the formation of acetic acid, inhibited the formation of acrolein, and promoted gasification of the glycerol decomposition products. Hydrogen and carbon oxides were the main gases produced in the catalytic experiments, with minor amounts of methane and ethylene. Complete glycerol conversion was achieved at a residence time of 8.5 s at 510 °C, and at around 5 s at 550 °C with the 1 wt% Ru/ZrO2 catalyst. The catalyst was not active enough to achieve complete gasification since high yields of primary products like acetic acid and acetaldehyde were still present. Carbon balances were between 80 and 60% in the catalytic experiments, decreasing continuously as the residence time was increased. This was attributed partially to the formation of methanol and acetaldehyde, which were not recovered and analyzed efficiently in our set-up, but also to the formation of carbon deposits. Carbon deposition was not observed on the catalyst particles but on the surface of the inert zirconia particles, especially at high residence time. This was related to the higher concentration of acetic acid and other acidic species in the catalytic experiments, which may polymerize to form tar-like carbon precursors. Because of carbon deposition, hydrogen yields were significantly lower than expected; for instance at 550 °C the hydrogen yield potential was only 50% of the stoichiometric value.
Resumo:
We synthesized Poly(decamethylene sebacate) - P10MS - and studied its overall crystallization rates in a range of temperatures using Differential Scanning Calorimetry in isothermal conditions, which enabled us to identify the crystallization mechanism by means of the Johnson-Mehl-Avrami-Kolmogorov equation. The critical cooling rate (Rc) to vitrify the P10MS was determined using a non-isothermal method proposed by Barandiarán & Colmenero (BC). The value of Rc is around 50-250 K/s, which confirms the experimentally observed difficulty to vitrify this polymer.
Resumo:
In the present work structural, magnetic and transport properties of InGaAs quantum wells (QW) prepared by MBE with an remote Mn layer are investigated. By means of high-resolution X-ray diffractometry the structure of the samples is analyzed. It is shown that Mn ions penetrate into the QW. Influence of the thickness of GaAs spacer and annealing at 286 ºС on the properties of the system is shown. It is shown that annealing of the samples led to Mn activation and narrowing of the Mn layer. Substantial role of 2D holes in ferromagnetic ordering in Mn layer is shown. Evidence for that is observation of maximum at 25 – 55 K on the resistivity temperature dependence. Position of maximum, which is used for quantitative assessment of the Curie temperature, correlates with calculations of the Curie temperature for structures with indirect interaction via 2D holes’ channel. Dependence of the Curie temperature on the spacer thickness shows, that creation of applicable spintronic devices needs high-precision equipment to manufacture extra fine structures. The magnetotransport measurements show that charge carrier mobility is very low. This leads to deficiency of the anomalous Hall effect. At the same time, magnetic field dependences of the magnetization at different temperatures demonstrate that systems are ferromagnetically ordered. These facts, most probably, give evidence of presence of the ferromagnetic MnAs clusters.
Resumo:
The Mössbauer analysis along with the structural Rietveld refinement based on powder X-ray data for the magnetic fraction (saturation magnetization, sigma = 19 J T-1 kg-1) separated from a tuffite material from Alto Paranaíba, state of Minas Gerais, Brazil, reveal that a (Ti, Mg)-rich maghemite (deduced sigma = 17 J T-1 kg-1) and, for the first time observed in this lithodomain, magnesioferrite (characteristic sigma = 21 J T-1 kg-1) respond for the magnetization of the rock material. Consistent models for the ionic distribution in these iron-rich spinel structures are proposed.
Resumo:
In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water.