995 resultados para Interpolation map


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method for efficient inversion of arbitrary radiative transfer models for image analysis is presented. The method operates by representing the shape of the function that maps model parameters to spectral reflectance by an adaptive look-up tree (ALUT) that evenly distributes the discretization error of tabulated reflectances in spectral space. A post-processing step organizes the data into a binary space partitioning tree that facilitates an efficient inversion search algorithm. In an example shallow water remote sensing application, the method performs faster than an implementation of previously published methodology and has the same accuracy in bathymetric retrievals. The method has no user configuration parameters requiring expert knowledge and minimizes the number of forward model runs required, making it highly suitable for routine operational implementation of image analysis methods. For the research community, straightforward and robust inversion allows research to focus on improving the radiative transfer models themselves without the added complication of devising an inversion strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The map of Gurgler Ferner (1 : 10.000) was used for determining changes of volume and mass compared to earlier surveys, as a basis for a geophysical determination of ice thickness, and as a glaciological document. The cartographic evaluation emphasized the terrain surrounding the snow and ice covered areas. Gurgler Ferner covers an area of 10.7 km**2 , 60 % of which are situated between 2800 and 3100 m, the altitude range of the equilibrium line. From 1969 to 1981 the glacier and its tributaries lost 25 *10**6 m**3 of water, equivalent to a mean lowering of the surface by 17 cm per year in good agreement with the value of Hintereisferner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The map covers the Cathedral Massif Glacier with its proglacial area and the surrounding terrain - altogether an area of about 5.2 square kilometers. The small cirque glacier is located in the Cathedral Massif on the continental slope of the northern Boundary Range in British Columbia, Canada. The field survey and the terrestrial photogrammetry was carried out in July 1977. In addition aerial photos taken in August 1975 were used for the photogrammetric plotting. Due to the lack of connection with the official Canadian geodetic net, a local net was used. The main objective of the mapping was to document the present-day glacier with its specific topographical features of the forefield. The map is printed in five colours in offset. The surface area of the glacier was 1.71 square kilometers in 1977 and has further reduced since then. During the stage of "maximum" neoglacial extend, the glacier area must have been close to 2.8 square kilometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Providing accurate maps of coral reefs where the spatial scale and labels of the mapped features correspond to map units appropriate for examining biological and geomorphic structures and processes is a major challenge for remote sensing. The objective of this work is to assess the accuracy and relevance of the process used to derive geomorphic zone and benthic community zone maps for three western Pacific coral reefs produced from multi-scale, object-based image analysis (OBIA) of high-spatial-resolution multi-spectral images, guided by field survey data. Three Quickbird-2 multi-spectral data sets from reefs in Australia, Palau and Fiji and georeferenced field photographs were used in a multi-scale segmentation and object-based image classification to map geomorphic zones and benthic community zones. A per-pixel approach was also tested for mapping benthic community zones. Validation of the maps and comparison to past approaches indicated the multi-scale OBIA process enabled field data, operator field experience and a conceptual hierarchical model of the coral reef environment to be linked to provide output maps at geomorphic zone and benthic community scales on coral reefs. The OBIA mapping accuracies were comparable with previously published work using other methods; however, the classes mapped were matched to a predetermined set of features on the reef.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.