968 resultados para International Seabed Authority
Resumo:
The 1984 International Symposium and Workshop on the Biology of Fur Seals originated in informal talks in 1981. However, the scope and focus of the symposium remained unclear until an informal workshop was held in San Diego in June 1983. This meeting synthesised data on the foraging and pup attendance activities of six species of fur seals, and attempted to formulate a coherent framework for the adaptations associated with their maternal strategies (Gentry et al. 1986). During the workshop it was clear that comparative data on many key aspects of fur seal biology and ecology were missing. This absence of data applied not only to less well known species, for some of which considerable unpublished data existed, but also to better known species for which research in some areas had either been neglected or unreported. The value of applying the comparative method to seals, especially comparisons integrating physiology, ecology, and reproductive biology, was amply demonstrated by the results of the 1983 workshop (Gentry and Kooyman 1986). However, we were also aware that many other problems outside the area of maternal strategies could benefit from comparative data, such as recovery of populations from the effects of harvesting. Therefore, to accommodate the range of potential research, we organized this symposium to produce an up-to-date synthesis of relevant information for all species of fur seals. It was also clear that fur seal research could benefit from increased communication and collaboration among its practitioners. To foster the spread of ideas, we held oral presentations on some topics of current research and techniques and organized workshops on specific topics, in addition to providing opportunities for informal talks among participants. Thanks to generous support from the British Antarctic Survey, the National Marine Fisheries Service of the United States, and the Scientific Committee on Antarctic Research, the International Fur Seal Symposium was held at the British Antarctic Survey, Cambridge, England, 23-27 April 1984. The 36 participants are shown in Figure 1. A list of Symposium participants and authors is presented in Appendix 1 of the Proceedings. (PDF file contains 220 pages.)
Resumo:
Accurate and precise estimates of age and growth rates are essential parameters in understanding the population dynamics of fishes. Some of the more sophisticated stock assessment models, such as virtual population analysis, require age and growth information to partition catch data by age. Stock assessment efforts by regulatory agencies are usually directed at specific fisheries which are being heavily exploited and are suspected of being overfished. Interest in stock assessment of some of the oceanic pelagic fishes (tunas, billfishes, and sharks) has developed only over the last decade, during which exploitation has increased steadily in response to increases in worldwide demand for these resources. Traditionally, estimating the age of fishes has been done by enumerating growth bands on skeletal hardparts, through length frequency analysis, tag and recapture studies, and raising fish in enclosures. However, problems related to determining the age of some of the oceanic pelagic fishes are unique compared with other species. For example, sampling is difficult for these large, highly mobile fishes because of their size, extensive distributions throughout the world's oceans, and for some, such as the marlins, infrequent catches. In addition, movements of oceanic pelagic fishes often transect temperate as well as tropical oceans, making interpretation of growth bands on skeletal hardparts more difficult than with more sedentary temperate species. Many oceanic pelagics are also long-lived, attaining ages in excess of 30 yr, and more often than not, their life cycles do not lend themselves easily to artificial propagation and culture. These factors contribute to the difficulty of determining ages and are generally characteristic of this group-the tunas, billfishes, and sharks. Accordingly, the rapidly growing international concern in managing oceanic pelagic fishes, as well as unique difficulties in ageing these species, prompted us to hold this workshop. Our two major objectives for this workshop are to: I) Encourage the interchange of ideas on this subject, and 2) establish the "state of the art." A total of 65 scientists from 10 states in the continental United States and Hawaii, three provinces in Canada, France, Republic of Senegal, Spain, Mexico, Ivory Coast, and New South Wales (Australia) attended the workshop held at the Southeast Fisheries Center, Miami, Fla., 15-18 February 1982. Our first objective, encouraging the interchange of ideas, is well illustrated in the summaries of the Round Table Discussions and in the Glossary, which defines terms used in this volume. The majority of the workshop participants agreed that the lack of validation of age estimates and the means to accomplish the same are serious problems preventing advancements in assessing the age and growth of fishes, particularly oceanic pelagics. The alternatives relating to the validation problem were exhaustively reviewed during the Round Table Discussions and are a major highlight of this workshop. How well we accomplished our second objective, to establish the "state of the art" on age determination of oceanic pelagic fishes, will probably best be judged on the basis of these proceedings and whether future research efforts are directed at the problem areas we have identified. In order to produce high-quality papers, workshop participants served as referees for the manuscripts published in this volume. Several papers given orally at the workshop, and included in these proceedings, were summarized from full-length manuscripts, which have been submitted to or published in other scientific outlets-these papers are designated as SUMMARY PAPERS. In addition, the SUMMARY PAPER designation was also assigned to workshop papers that represented very preliminary or initial stages of research, cursory progress reports, papers that were data shy, or provide only brief reviews on general topics. Bilingual abstracts were included for all papers that required translation. We gratefully acknowledge the support of everyone involved in this workshop. Funding was provided by the Southeast Fisheries Center, and Jack C. Javech did the scientific illustrations appearing on the cover, between major sections, and in the Glossary. (PDF file contains 228 pages.)
Resumo:
The Codex Committee on Fish and Fishery Products held its 30th Session in Agadir, Morocco from 28 September to 2 October 2009, at the kind invitation of the Government of Morocco. The Session was chaired by Dr Bjørn Røthe Knudsen, Regional Director of the Norwegian Food Safety Authority. The Session was attended by 218 delegates representing 78 Member States, one Member Organization (EC) and 1 international organization.
Resumo:
Future coastal management practices require that a holistic, ecosystem management approach be adopted. Coastal ecosystems, however, present a variety of specific and unique challenges relative to open ocean systems. In particular, interactions with the seabed significantly influence the coastal ecosystem. Observing technologies must be developed and employed to incorporate seafloor interactions, processes and habitat diversity into research and management activities. An ACT Workshop on Seabed Sensor Technology was held February 1-3, 2006 in Savannah, Georgia, to summarize the current state of sensor technologies applicable to examining and monitoring the coastal seabed, including the near-bed benthic boundary layer and surface sediment layer. Workshop participants were specifically charged to identify current sensors in use, recommend improvements to these systems and to identify areas for future development and activities that would advance the use of sensor technology in the observation, monitoring and management of the coastal benthic environment. (pdf contains 23 pages)
Resumo:
In near wall measurements with microPIV/PTV, whether seeding particles can be effectively used to detect local fluid velocity is a
crucial problem. This talk presents our recent measurements in microchannels [1][2]. Based on measured velocity profiles with 200nm
and 50nm in pure water, we found that the measured velocity profiles are agreed with the theoretical values in the middle of channel,
but large deviations between measured data and theoretical prediction appear close to wall (0.25mm