979 resultados para Intermediate-filament Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present optical spectra of 403 stars and quasi-stellar objects in order to obtain distance limits towards intermediate- and high-velocity clouds (IHVCs), including new Fibre-fed Extended Range Optical Spectrograph (FEROS) observations plus archival ELODIE, FEROS, High Resolution Echelle Spectrometer (HIRES) and Ultraviolet and Visual Echelle Spectrograph (UVES) data. The non-detection of Ca II K interstellar (IS) absorption at a velocity of −130 to −60 km s−1 towards HDE 248894 (d ∼ 3 kpc) and HDE 256725 (d ∼ 8 kpc) in data at signal-to-noise ratio (S/N) > 450 provides a new firm lower distance limit of 8 kpc for the anti-centre shell HVC. Similarly, the non-detection of Ca II K IS absorption towards HD 86248 at S/N ∼ 500 places a lower distance limit of 7.6 kpc for Complex EP, unsurprising since this feature is probably related to the Magellanic System. The lack of detection of Na I D at S/N = 35 towards Mrk 595 puts an improved upper limit for the Na I column density of log (NNaD <) 10.95 cm−2 towards this part of the Cohen Stream where Ca II was detected by Wakker et al. Absorption at ∼ −40 km s−1 is detected in Na I D towards the Galactic star PG 0039+049 at S/N = 75, placing a firm upper distance limit of 1 kpc for the intermediate-velocity cloud south (IVS), where a tentative detection had previously been obtained by Centurion et al. Ca ´ II K and Na I D absorption is detected at −53 km s−1 towards HD 93521, which confirms the upper distance limit of 2.4 kpc for part of the IV arch complex obtained using the International Ultraviolet Explorer (IUE) data by Danly. Towards HD 216411 in Complex H a non-detection in Na D towards gas with log(NH I) = 20.69 cm−2 puts a lower distance limit of 6.6 kpc towards this HVC complex. Additionally, Na I D absorption is detected at −43.7 km s−1 in the star HD 218915 at a distance of 5.0 kpc in gas in the same region of the sky as Complex H. Finally, the Na I/Ca II and Ca II/H I ratios of the current sample are found to lie in the range observed for previous studies of IHVCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In common with other terrestrial flatworms, the mucus produced by Artioposthia triangulata may have a number of functions, including protection from environmental factors and from predators, and it provides the flatworm with lubrication for movement and adhesion. No previous work has been carried out on the characterization of proteins present in the mucus of A. triangulata and this study was a preliminary investigation of the mucus. Mucus was analysed by SDS-polyacrylamide gel electrophoresis, biotinylated peptide affinity probes and the API ZYM enzyme detection kit. Results have revealed the presence of at least 40 polypeptides in the mucus and further studies with biotinylated probes have characterised one of them as a chymotrypsin-like serine protease. (C) 1998 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experimental advances in light technology necessitate the availability of sophisticated theoretical models which can incorporate an accurate treatment of double-electron continua. We describe here a new intermediate-energy R-matrix approach to photoionisation and photo-double-ionisation and illustrate its feasibilty by application to photoionisation and photo-double-ionisation of He, and photodetachment and photo-double-detachment of H-. Results are shown to be in excellent agreement with previous theoretical and experimental studies. This work is a key step in the development of a multipurpose R-matrix code for multiple-electron ejection. © 2012 American Physical Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1ß secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS) is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1ß secretion and pyroptosis. Moreover, IL-1ß secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS). We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1ß secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a gram-negative opportunistic pathogen that belongs to the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly within phagocytic cells, and some epidemic strains produce a brown melanin-like pigment that can scavenge free radicals, resulting in the attenuation of the host cell oxidative burst. In this work, we demonstrate that the brown pigment produced by B. cenocepacia C5424 is synthesized from a homogentisate (HGA) precursor. The disruption of BCAL0207 (hppD) by insertional inactivation resulted in loss of pigmentation. Steady-state kinetic analysis of the BCAL0207 gene product demonstrated that it has 4-hydroxyphenylpyruvic acid dioxygenase (HppD) activity. Pigmentation could be restored by complementation providing hppD in trans. The hppD mutant was resistant to paraquat challenge but sensitive to H2O2 and to extracellularly generated superoxide anions. Infection experiments in RAW 264.7 murine macrophages showed that the nonpigmented bacteria colocalized in a dextran-positive vacuole, suggesting that they are being trafficked to the lysosome. In contrast, the wild-type strain did not localize with dextran. Colocalization of the nonpigmented strain with dextran was reduced in the presence of the NADPH oxidase inhibitor diphenyleneiodonium, and also the inducible nitric oxide inhibitor aminoguanidine. Together, these observations suggest that the brown pigment produced by B. cenocepacia C5424 is a pyomelanin synthesized from an HGA intermediate that is capable of protecting the organism from in vitro and in vivo sources of oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthrax lethal toxin (LeTx) induces rapid cell death of RAW246.7 macrophages. We recently found that a small population of these macrophages is spontaneously and temporally refractory to LeTx-induced cytotoxicity. Analysis of genome-wide transcripts of a resistant clone before and after regaining LeTx sensitivity revealed that a reduction of two closely related mitochondrial proteins, Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) and Bnip3-like (Bnip3L), correlates with LeTx resistance. Down-regulation of Bnip3 and Bnip3L was also found in "toxin-induced resistance" whereby sublethal doses of LeTx induce resistance to subsequent exposure to cytolytic toxin doses. The role of Bnip3 and Bnip3L in LeTx-induced cell death was confirmed by showing that overexpression of either Bnip3 or Bnip3L rendered the resistant cells susceptible to LeTx, whereas down-regulation of Bnip3 and Bnip3L in wild-type macrophages conferred resistance. The down-regulation of Bnip3 and Bnip3L mRNAs by LeTx occurred at both transcriptional and mRNA stability levels. Inhibition of the p38 pathway by lethal factor was responsible for the destabilization of Bnip3/Bnip3L mRNAs as confirmed by showing that p38 inhibitors stabilized Bnip3 and Bnip3L mRNAs and conferred resistance to LeTx cytotoxicity. Therefore, Bnip3/Bnip3L play a crucial role in LeTx-induced cytotoxicity, and down-regulation of Bnip3/Bnip3L is a mechanism of spontaneous or toxin-induced resistance of macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic evidence suggests that a family of bacterial and eukaryotic integral membrane proteins (referred to as Wzx and Rft1, respectively) mediates the transbilayer movement of isoprenoid lipid-linked glycans. Recent work in our laboratory has shown that Wzx proteins involved in O-antigen lipopolysaccharide (LPS) assembly have relaxed specificity for the carbohydrate structure of the O-antigen subunit. Furthermore, the proximal sugar bound to the isoprenoid lipid carrier, undecaprenyl-phosphate (Und-P), is the minimal structure required for translocation. In Escherichia coli K-12, N-acetylglucosamine (GlcNAc) is the proximal sugar of the O16 and enterobacterial common antigen (ECA) subunits. Both O16 and ECA systems have their respective translocases, WzxO16 and WzxE, and also corresponding polymerases (WzyO16 and WzyE) and O-antigen chain-length regulators (WzzO16 and WzzE), respectively. In this study, we show that the E. coli wzxE gene can fully complement a wzxO16 translocase deletion mutant only if the majority of the ECA gene cluster is deleted. In addition, we demonstrate that introduction of plasmids expressing either the WzyE polymerase or the WzzE chain-length regulator proteins drastically reduces the O16 LPS-complementing activity of WzxE. We also show that this property is not unique to WzxE, since WzxO16 and WzxO7 can cross-complement translocase defects in the O16 and O7 antigen clusters only in the absence of their corresponding Wzz and Wzy proteins. These genetic data are consistent with the notion that the translocation of O-antigen and ECA subunits across the plasma membrane and the subsequent assembly of periplasmic O-antigen and ECA Und-PP-linked polymers depend on interactions among Wzx, Wzz, and Wzy, which presumably form a multiprotein complex.