930 resultados para Inter-and Inta-site


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud ( 1992 ) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M 11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ocean Drilling Program (ODP) drilled at five sites in the western Atlantic Ocean during Leg 207. The objective of the drilling was to recover samples from the shallow buried Cretaceous and Paleocene sediments on the Demerara Rise off Suriname, South America. These sediments are being studied for a number of paleoceanographic studies of the low-latitude Atlantic off the coast of Suriname (this volume). For this report two sites, Sites 1257 and 1258, were selected for silicoflagellate study because shipboard results suggested these two sites as the only ones with siliceous microfossils of Paleocene-Eocene age. The Demarara Rise is a predominant submarine plateau located off the coast of Suriname and French Guyana. This plateau stretches 380 km along the coast and is 220 km wide. The depth to seafloor along the depth transect drilled during ODP Leg 207 ranges from 1000 to 4500 m, but most of the remainder of the plateau lies in shallow water of 700 m. Much of this area is covered with 2-3 km of sediments. The Demerara Rise is built on rifted Precambrian continental crust. The plateau was one of the last places to be in contact with West Africa during the opening of the Atlantic Ocean (see Shipboard Scientific Party, 2004). Site 1257 (9°27'N, 54°20'W; water depth = 2951 m) is located on a terrace on the northwestern Demerara Rise ~400 km from Suriname. This is the second deepest water depth location drilled during Leg 207. Sediments from this area range in age from Miocene to Albian. This area is part of the transform fault that separated from Central America and western Africa. Three holes were drilled at Site 1257. Site 1258 (9°26'N, 54°43'W; water depth = 3192 m) is located on the western slope of the Demerara Rise ~380 km north of Suriname. This site is the distal and deepest site of the paleoceanographic depth transect drilled across Demerara Rise during Leg 207. The area is located on a ridge of Paleocene sediments cropping out on the seafloor. Three holes were drilled at Site 1258, but only one is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Legs 127 and 128 of the Ocean Drilling Program cored basement samples from two sites in the Yamato Basin (Sites 794 and 797) and one site in the Japan Basin (Site 795) of the Japan Sea. These samples represent sills and lava flows erupted or shallowly intruded in a marine environment during backarc extension and spreading in the middle Miocene. In this paper, we describe the geochemical characteristics of these igneous units using 52 new instrumental neutron activation analyses (INAA), 8 new X-ray fluorescence (XRF) analyses, and previous shipboard XRF analyses. The sills intruded into soft sediment at Sites 794 and 797 were subject to extensive hydrothermal activity, estimated at <230° C under subgreenschist facies conditions, which heavily to totally altered the fine-grained unit margins and moderately to heavily altered the coarse-grained unit interiors. Diagenesis further altered the composition of these igneous bodies and lava flows at Sites 794, 795, and 797, most intensely at unit margins. Our study of two well-sampled units shows that Mg, Ca, Sr, and the large-ion lithophile elements (LILE) mobilized during alteration, and that the concentrations of Y, Yb, and Lu decreased and Ce increased in the most severely altered samples. Nevertheless, our study shows that the rare-earth elements (REE) were relatively immobile in the majority of the samples, even where secondary mixed-layer clays comprised the great majority of the rock. Fresher Yamato Basin samples are compositionally heterogenous tholeiitic basalts and dolerites. At Site 794 in the north-central portion of the basin, Units 1 to 5 (upper basement) comprise mildly light rare-earth element (LREE) enriched basalts and dolerites (chondrite-normalized La/Sm of 1.4-1.8), while the stratigraphically lower Units 6 to 9 are less enriched dolerites with (La/Sm)N of 0.7-1.3. All Site 794 samples lack Nb and Ta depletions and LILE enrichments, lacking a strong subduction-related incompatible element geochemical signature. At Site 797 in the western margin of the basin, two stratigraphically-definable unit groups also occur. The upper nine units are incompatible-element depleted tholeiitic sills and flows with strong depletions of Nb and Ta relative to normal mid-ocean ridge basalt (N-MORB). The lower twelve sills represent LREE-enriched tholeiites (normalized La/Sm ranges from 1.1 to 1.8), with distinctly higher LILE and high field-strength element (HFSE) contents. At Site 795 at the northern margin of the Japan Sea, three eruptive units consist of basaltic andesite to calc-alkaline basalt (normalized La/Sm of 1.1 to 1.5) containing moderate depletions of the HFSE relative to N-MORB. The LILE-depleted nature of these samples precludes their origin in a continental arc, indicating that they more likely erupted within a rifting oceanic arc system. The heterogenous nature of the Japan Sea rocks indicate that they were derived at each site from multiple parental magmas generated from a compositionally heterogenous mantle source. Their chemistry is intermediate in character between arc basalts, MORB, and intraplate basalts, and implies little involvement of continental crust at any point in their genesis. Their flat chondrite-normalized, medium-to-heavy rare earth patterns indicate that the primary magmas which produced them last equilibrated with and segregated from spinel lherzolite at shallow depths (<30 kbar). In strong contrast to their isotopic compositional arrays, subduction-related geochemical signatures are usually poorly defined. No basin-wide temporal or geographic systematics of rock chemistry may be confidently detailed; instead, the data show both intimate (site-specific) and widespread backarc mantle heterogeneity over a narrow (2 Ma or so) range in time, with mantle heterogeneity most closely resembling a "plum-pudding" model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). The assemblages are characterized by a scarcity or absence of Tethyan taxa. The Berriasian-early Aptian radiolarian record recovered at Site 765 is unique in its density of well-preserved samples and in its faunal contents. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers of Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant species, whereas sand faunas are dominated by non-Tethyan species that have never been reported before. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast results from a difference in provenance, rather than from hydraulic sorting. Biostratigraphic dating proved difficult principally because of the paucity or even absence of (Tethyan) species used in published zonations. In addition, published zonations are contradictory and do not reflect total ranges of species. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin reflect restricted oceanic conditions for the latest Jurassic to Barremian time period. Neither the sedimentary facies nor the faunal associations bear any resemblance to sediment and radiolarian facies observed in typical Tethyan sequences. I conclude that the Argo Basin was paleoceanographically separated from Tethys during the Late Jurassic and part of the Early Cretaceous by its position at a higher paleolatitude and by enclosing landmasses, i.e., northeastern India and the Shillong Block, which were adjacent to the northwestern Australian margin before the opening. Assemblages recovered from radiolarian sand layers are dominated by non-Tethyan species that are interpreted as circumantarctic. Their sudden appearance in the late Berriasian/early Valanginian pre-dates the oceanization of the Indo-Australian break-up (Ml 1, late Valanginian) by about 5 m.y., but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and its adjacent margins probably were submerged deeply enough to allow an intermittent "spillover" of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Circumantarctic cold-water radiolarians transported into the Argo Basin upwelled along the margin and died en masse. Concomitant winnowing by bottom currents led to their accumulation in distinct radiolarite layers. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with the two pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic and Early Cretaceous seafloor spreading. The absence of typical Tethyan radiolarian species during the late Valanginian to late Hauterivian period is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (Mil) and rapid spreading between southeast India and western Australia. The reappearance and gradual increase in abundance and diversity of Tethyan forms along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian and early Aptian and may have resulted from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characteristic remanent magnetizations derived from detailed thermal and alternating-field demagnetization of basalts recovered at Ocean Drilling Program (ODP) Site 807 on the Ontong Java Plateau reveal constant normal polarity consistent with paleontological ages from overlying sediments, suggesting deposition in early Aptian times at the beginning of the Cretaceous Normal Polarity Superchron (K-N). The paleomagnetic data can be divided into 14 distinct inclination groups, which together define a paleolatitude of 18°S, some 16° shallower than expected from a Pacific apparent polar wander path (APWP) based on nonsedimentary data. The data display a trend in paleomagnetic inclination, showing shallower values with increasing depth. We conclude that this trend is a result of local tectonic tilting during the waning phases of volcanism on the plateau. Hotspot-based plate reconstructions for the Early Cretaceous place the Ontong Java Plateau on the Louisville hotspot, presently located at 51°S, whereas the paleolatitude for Site 807 based on the Pacific APWP is 34°S. Because the nominal mean inclination from Site 807 and values derived from Deep Sea Drilling Project (DSDP) sediments of other sites predict shallower paleolatitudes for the Ontong Java Plateau, values from the Pacific APWP provide lower bounds on true polar wander. Considering mantle plume sources on the southern and northern portions of the plateau (DSDP Site 288 and ODP Site 807, respectively), the Louisville hotspot appears to have moved 9°-17° to the south relative to the spin axis since the Early Cretaceous. This sense of motion is consistent with previous results for the Suiko Seamount (65 Ma) of the Hawaiian-Emperor Chain.