935 resultados para Input-output model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider whether survey respondents’ probability distributions, reported as histograms, provide reliable and coherent point predictions, when viewed through the lens of a Bayesian learning model. We argue that a role remains for eliciting directly-reported point predictions in surveys of professional forecasters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycoplasma gallisepticum (MG) is a bacterium that causes respiratory disease in chickens, leading to reduced egg production. A dynamic simulation model was developed that can be used to assess the costs and benefits of control using antimicrobials or vaccination in caged or free range systems. The intended users are veterinarians and egg producers. A user interface is provided for input of flock specific parameters. The economic consequence of an MG outbreak is expressed as a reduction in expected egg output. The model predicts that either vaccination or microbial treatment can approximately halve potential losses from MG in some circumstances. Sensitivity analysis is used to test assumptions about infection rate and timing of an outbreak. Feedback from veterinarians points to the value of the model as a discussion tool with producers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional climate downscaling has arrived at an important juncture. Some in the research community favour continued refinement and evaluation of downscaling techniques within a broader framework of uncertainty characterisation and reduction. Others are calling for smarter use of downscaling tools, accepting that conventional, scenario-led strategies for adaptation planning have limited utility in practice. This paper sets out the rationale and new functionality of the Decision Centric (DC) version of the Statistical DownScaling Model (SDSM-DC). This tool enables synthesis of plausible daily weather series, exotic variables (such as tidal surge), and climate change scenarios guided, not determined, by climate model output. Two worked examples are presented. The first shows how SDSM-DC can be used to reconstruct and in-fill missing records based on calibrated predictor-predictand relationships. Daily temperature and precipitation series from sites in Africa, Asia and North America are deliberately degraded to show that SDSM-DC can reconstitute lost data. The second demonstrates the application of the new scenario generator for stress testing a specific adaptation decision. SDSM-DC is used to generate daily precipitation scenarios to simulate winter flooding in the Boyne catchment, Ireland. This sensitivity analysis reveals the conditions under which existing precautionary allowances for climate change might be insufficient. We conclude by discussing the wider implications of the proposed approach and research opportunities presented by the new tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanistic catchment-scale phosphorus models appear to perform poorly where diffuse sources dominate. We investigate the reasons for this for one model, INCA-P, testing model output against 18 months of daily data in a small Scottish catchment. We examine key model processes and provide recommendations for model improvement and simplification. Improvements to the particulate phosphorus simulation are especially needed. The model evaluation procedure is then generalised to provide a checklist for identifying why model performance may be poor or unreliable, incorporating calibration, data, structural and conceptual challenges. There needs to be greater recognition that current models struggle to produce positive Nash–Sutcliffe statistics in agricultural catchments when evaluated against daily data. Phosphorus modelling is difficult, but models are not as useless as this might suggest. We found a combination of correlation coefficients, bias, a comparison of distributions and a visual assessment of time series a better means of identifying realistic simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958–2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The canopy interception capacity is a small but key part of the surface hydrology, which affects the amount of water intercepted by vegetation and therefore the partitioning of evaporation and transpiration. However, little research with climate models has been done to understand the effects of a range of possible canopy interception capacity parameter values. This is in part due to the assumption that it does not significantly affect climate. Near global evapotranspiration products now make evaluation of canopy interception capacity parameterisations possible. We use a range of canopy water interception capacity values from the literature to investigate the effect on climate within the climate model HadCM3. We find that the global mean temperature is affected by up to -0.64 K globally and -1.9 K regionally. These temperature impacts are predominantly due to changes in the evaporative fraction and top of atmosphere albedo. In the tropics, the variations in evapotranspiration affect precipitation, significantly enhancing rainfall. Comparing the model output to measurements, we find that the default canopy interception capacity parameterisation overestimates canopy interception loss (i.e. canopy evaporation) and underestimates transpiration. Overall, decreasing canopy interception capacity improves the evapotranspiration partitioning in HadCM3, though the measurement literature more strongly supports an increase. The high sensitivity of climate to the parameterisation of canopy interception capacity is partially due to the high number of light rain-days in the climate model that means that interception is overestimated. This work highlights the hitherto underestimated importance of canopy interception capacity in climate model hydroclimatology and the need to acknowledge the role of precipitation representation limitations in determining parameterisations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An evidence-based review of the potential impact that the introduction of genetically-modified (GM) cereal and oilseed crops could have for the UK was carried out. The inter-disciplinary research project addressed the key research questions using scenarios for the uptake, or not, of GM technologies. This was followed by an extensive literature review, stakeholder consultation and financial modelling. The world area of canola, oilseed rape (OSR) low in both erucic acid in the oil and glucosinolates in the meal, was 34M ha in 2012 of which 27% was GM; Canada is the lead producer but it is also grown in the USA, Australia and Chile. Farm level effects of adopting GM OSR include: lower production costs; higher yields and profits; and ease of farm management. Growing GM OSR instead of conventional OSR reduces both herbicide usage and environmental impact. Some 170M ha of maize was grown in the world in 2011 of which 28% was GM; the main producers are the USA, China and Brazil. Spain is the main EU producer of GM maize although it is also grown widely in Portugal. Insect resistant (IR) and herbicide tolerant (HT) are the GM maize traits currently available commercially. Farm level benefits of adopting GM maize are lower costs of production through reduced use of pesticides and higher profits. GM maize adoption results in less pesticide usage than on conventional counterpart crops leading to less residues in food and animal feed and allowing increasing diversity of bees and other pollinators. In the EU, well-tried coexistence measures for growing GM crops in the proximity of conventional crops have avoided gene flow issues. Scientific evidence so far seems to indicate that there has been no environmental damage from growing GM crops. They may possibly even be beneficial to the environment as they result in less pesticides and herbicides being applied and improved carbon sequestration from less tillage. A review of work on GM cereals relevant for the UK found input trait work on: herbicide and pathogen tolerance; abiotic stress such as from drought or salinity; and yield traits under different field conditions. For output traits, work has mainly focussed on modifying the nutritional components of cereals and in connection with various enzymes, diagnostics and vaccines. Scrutiny of applications submitted for field trial testing of GM cereals found around 9000 applications in the USA, 15 in Australia and 10 in the EU since 1996. There have also been many patent applications and granted patents for GM cereals in the USA for both input and output traits;an indication of the scale of such work is the fact that in a 6 week period in the spring of 2013, 12 patents were granted relating to GM cereals. A dynamic financial model has enabled us to better understand and examine the likely performance of Bt maize and HT OSR for the south of the UK, if cultivation is permitted in the future. It was found that for continuous growing of Bt maize and HT OSR, unless there was pest pressure for the former and weed pressure for the latter, the seed premia and likely coexistence costs for a buffer zone between other crops would reduce the financial returns for the GM crops compared with their conventional counterparts. When modelling HT OSR in a four crop rotation, it was found that gross margins increased significantly at the higher levels of such pest or weed pressure, particularly for farm businesses with larger fields where coexistence costs would be scaled down. The impact of the supply of UK-produced GM crops on the wider supply chain was examined through an extensive literature review and widespread stakeholder consultation with the feed supply chain. The animal feed sector would benefit from cheaper supplies of raw materials if GM crops were grown and, in the future, they might also benefit from crops with enhanced nutritional profile (such as having higher protein levels) becoming available. This would also be beneficial to livestock producers enabling lower production costs and higher margins. Whilst coexistence measures would result in increased costs, it is unlikely that these would cause substantial changes in the feed chain structure. Retailers were not concerned about a future increase in the amount of animal feed coming from GM crops. To conclude, we (the project team) feel that the adoption of currently available and appropriate GM crops in the UK in the years ahead would benefit farmers, consumers and the feed chain without causing environmental damage. Furthermore, unless British farmers are allowed to grow GM crops in the future, the competitiveness of farming in the UK is likely to decline relative to that globally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds) and CO. When these ozone changes are used to calculate radiative forcing (RF) (and climate metrics such as the global warming potential (GWP) and global temperature-change potential (GTP)) there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane) concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia). We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field) are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3 times larger using the ensemble-mean fields than using the individual models to calculate the RF. The source of this effect is largely due to the construction of the input ozone fields, which overestimate the true ensemble spread. Hence, while the average of multi-model fields are normally appropriate for calculating mean RF, GWP and GTP, they are not a reliable method for calculating the uncertainty in these fields, and in general overestimate the uncertainty.