985 resultados para Indirect Image Orientation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of flames in a turbulent methane/air stratified swirl burner is presented. The degree of stratification and swirl are systematically varied to generate a matrix of experimental conditions, allowing their separate and combined effects to be investigated. Non-swirling flows are considered in the present paper, and the effects of swirl are considered in a companion paper (Part II). A mean equivalence ratio of φ=0.75 is used, with φ for the highest level of stratification spanning 0.375-1.125. The burner features a central bluff-body to aid flame stabilization, and the influence of the induced recirculation zone is also considered. The current work focuses on non-swirling flows where two-component particle image velocimetry (PIV) measurements are sufficient to characterize the main features of the flow field. Scalar data obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution allow the behavior of key combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. Simultaneous cross-planar OH-PLIF is used to determine the orientation of the instantaneous flame normal in the scalar measurement window, allowing gradients in temperature and progress variable to be angle corrected to their three dimensional values. The relationship between curvature and flame thickness is investigated using the OH-PLIF images, as well as the effect of stratification on curvature.The main findings are that the behavior of the key combustion species in temperature space is well captured on the mean by laminar flame calculations regardless of the level of stratification. H 2 and CO are significant exceptions, both appearing at elevated levels in the stratified flames. Values for surface density function and by extension thermal scalar dissipation rate are found to be substantially lower than laminar values, as the thickening of the flame due to turbulence dominates the effect of increased strain. These findings hold for both premixed and stratified flames. The current series of flames is proposed as an interesting if challenging set of test cases for existing and emerging turbulent flame models, and data are available on request. © 2012 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the modern and dynamic construction environment it is important to access information in a fast and efficient manner in order to improve the decision making processes for construction managers. This capability is, in most cases, straightforward with today’s technologies for data types with an inherent structure that resides primarily on established database structures like estimating and scheduling software. However, previous research has demonstrated that a significant percentage of construction data is stored in semi-structured or unstructured data formats (text, images, etc.) and that manually locating and identifying such data is a very hard and time-consuming task. This paper focuses on construction site image data and presents a novel image retrieval model that interfaces with established construction data management structures. This model is designed to retrieve images from related objects in project models or construction databases using location, date, and material information (extracted from the image content with pattern recognition techniques).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perception of peripherally viewed shapes is impaired when surrounded by similar shapes. This phenomenon is commonly referred to as "crowding". Although studied extensively for perception of characters (mainly letters) and, to a lesser extent, for orientation, little is known about whether and how crowding affects perception of other features. Nevertheless, current crowding models suggest that the effect should be rather general and thus not restricted to letters and orientation. Here, we report on a series of experiments investigating crowding in the following elementary feature dimensions: size, hue, and saturation. Crowding effects in these dimensions were benchmarked against those in the orientation domain. Our primary finding is that all features studied show clear signs of crowding. First, identification thresholds increase with decreasing mask spacing. Second, for all tested features, critical spacing appears to be roughly half the viewing eccentricity and independent of stimulus size, a property previously proposed as the hallmark of crowding. Interestingly, although critical spacings are highly comparable, crowding magnitude differs across features: Size crowding is almost as strong as orientation crowding, whereas the effect is much weaker for saturation and hue. We suggest that future theories and models of crowding should be able to accommodate these differences in crowding effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational models of visual cortex, and in particular those based on sparse coding, have enjoyed much recent attention. Despite this currency, the question of how sparse or how over-complete a sparse representation should be, has gone without principled answer. Here, we use Bayesian model-selection methods to address these questions for a sparse-coding model based on a Student-t prior. Having validated our methods on toy data, we find that natural images are indeed best modelled by extremely sparse distributions; although for the Student-t prior, the associated optimal basis size is only modestly over-complete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ideally, one would like to perform image search using an intuitive and friendly approach. Many existing image search engines, however, present users with sets of images arranged in some default order on the screen, typically the relevance to a query, only. While this certainly has its advantages, arguably, a more flexible and intuitive way would be to sort images into arbitrary structures such as grids, hierarchies, or spheres so that images that are visually or semantically alike are placed together. This paper focuses on designing such a navigation system for image browsers. This is a challenging task because arbitrary layout structure makes it difficult - if not impossible - to compute cross-similarities between images and structure coordinates, the main ingredient of traditional layouting approaches. For this reason, we resort to a recently developed machine learning technique: kernelized sorting. It is a general technique for matching pairs of objects from different domains without requiring cross-domain similarity measures and hence elegantly allows sorting images into arbitrary structures. Moreover, we extend it so that some images can be preselected for instance forming the tip of the hierarchy allowing to subsequently navigate through the search results in the lower levels in an intuitive way. Copyright 2010 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This work is concerned with the creation of three-dimensional (3D) extended-field-of-view ultrasound from a set of volumes acquired using a mechanically swept 3D probe. 3D volumes of ultrasound data can be registered by attaching a position sensor to the probe; this can be an inconvenience in a clinical setting. A position sensor can also cause some misalignment due to patient movement and respiratory motion. We propose a combination of three-degrees-of-freedom image registration and an unobtrusively integrated inertial sensor for measuring orientation. The aim of this research is to produce a reliable and portable ultrasound system that is able to register 3D volumes quickly, making it suitable for clinical use. METHOD: As part of a feasibility study we recruited 28 pregnant females attending for routine obstetric scans to undergo 3D extended-field-of-view ultrasound. A total of 49 data sets were recorded. Each registered data set was assessed for correct alignment of each volume by two independent observers. RESULTS: In 77-83% of the data sets more than four consecutive volumes registered. The successful registration relies on good overlap between volumes and is adversely affected by advancing gestational age and foetal movement. CONCLUSION: The development of reliable 3D extended-field-of-view ultrasound may help ultrasound practitioners to demonstrate the anatomical relation of pathology and provide a convenient way to store data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron and hole conducting 10-nm-wide polymer morphologies hold great promise for organic electro-optical devices such as solar cells and light emitting diodes. The self-assembly of block-copolymers (BCPs) is often viewed as an efficient way to generate such materials. Here, a functional block copolymer that contains perylene bismide (PBI) side chains which can crystallize via π-π stacking to form an electron conducting microphase is patterned harnessing hierarchical electrohydrodynamic lithography (HEHL). HEHL film destabilization creates a hierarchical structure with three distinct length scales: (1) micrometer-sized polymer pillars, containing (2) a 10-nm BCP microphase morphology that is aligned perpendicular to the substrate surface and (3) on a molecular length scale (0.35-3 nm) PBI π-π-stacks traverse the HEHL-generated plugs in a continuous fashion. The good control over BCP and PBI alignment inside the generated vertical microstructures gives rise to liquid-crystal-like optical dichroism of the HEHL patterned films, and improves the electron conductivity across the film by 3 orders of magnitude. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel method for controlling the growth orientation of individual carbon nanotube (CNT) microstructures on a silicon wafer substrate. Our method controls the CNT forest orientation by patterning the catalyst layer used in the CNTs growth on slanted KOH edges. The overlap of catalyst area on the horizontal bottom and sloped sidewall surfaces of the KOH-etched substrate enables precise variation of the growth direction. These inclined structures can profit from the outstanding mechanical, electrical, thermal, and optical properties of CNTs and can therefore improve the performance of several MEMS devices. Inclined CNT microstructures could for instance be used as cantilever springs in probe card arrays, as tips in dip-pen lithography, and as sensing element in advanced transducers. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present quantitative analysis of the ultra-high photoconductivity in amorphous oxide semiconductor (AOS) thin film transistors (TFTs), taking into account the sub-gap optical absorption in oxygen deficiency defects. We analyze the basis of photoconductivity in AOSs, explained in terms of the extended electron lifetime due to retarded recombination as a result of hole localization. Also, photoconductive gain in AOS photo-TFTs can be maximized by reducing the transit time associated with short channel lengths, making device scaling favourable for high sensitivity operation. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response to a local, tip-induced electric field of ferroelastic domains in thin polycrystalline lead zirconate titanate films with predominantly (110) orientation has been studied using Enhanced Piezoresponse Force Microscopy. Two types of reversible polytwin switching between well-defined orientations have been observed. When a-c domains are switched to other forms of a-c domains, the ferroelastic domain walls rotate in-plane by 109.5°, and when a-c domains are switched to c-c domains (or vice-versa), the walls rotate by 54.75°. © 2013 AIP Publishing LLC.