972 resultados para Index numbers (Economics)
Resumo:
A new finite-difference scheme is presented for the second derivative of a semivectorial field in a step-index optical waveguide with tilt interfaces. The present scheme provides an accurate description of the tilt interface of the nonrectangular structure. Comparison with previously presented formulas shows the effectiveness of the present scheme.
Resumo:
The effects of InP substrate orientations on self-assembled InAs quantum dots (QDs) have been investigated by molecular beam epitaxy (MBE). A comparison between atomic force microscopy (AFM) and photoluminescence (PL) spectra shows that a high density of smaller InAs islands can be obtained by using such high index substrates. On the other hand, by introducing a lattice-matched underlying In0.52Al0.24Ga0.24As layer, the InAs QDs can be much more uniform in size and have a great improvement in PL properties. More importantly, 1.55-mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (001) InP substrate with underlying In0.52Al0.24Ga0.24As layer. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
By using V-prism refractometer, the refractive indices of a polyetherketone (PEK-c) guest-host polymer system were measured with the polymer in solutions. The Lorenz-Lorentz local field formalism was used in the calculation of the refractive indices of the polymers from the measured indices of the polymer solutions and the pure solvent by using V-prism refractometer. The refractive index dispersions of the polymers were obtained by fitting the measured indices of the polymers to Sellmeyer equation. The method allows for an accuracy in index of 0.7% in the determination of the polymer indices. In addition, a large difference between the indices of the polymer and the solvent, and a higher polymer volume fraction in the measured polymer solution are favorable for a high accuracy. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, InGaAs quantum dots with an adjusting InGaAlAs layer underneath are grown on (n 1 1)A/B (n = 2-5) and the reference (1 0 0) substrates by molecular beam epitaxy. Small and dense InGaAs quantum dots are formed on (1 0 0) and (n 1 1)B substrates. A comparative study by atomic force microscopy shows that the alignment and uniformity for InGaAs quantum dots are greatly improved on(5 1 1)B but deteriorated on (3 1 1)B surface, demonstrating the great influence of the buried InGaAlAs layer. There is an increase in photoluminescence intensity and a decrease in the full-width at half-maximum when n varies from 2 to 5. Quantum dots formed on (3 1 1)A and (5 1 1)A surfaces are large and random in distribution, and no emission from these dots can be detected. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The structural and optical properties of InAs layers grown on high-index InP surfaces by molecular beam epitaxy are investigated in order to understand the self-organization of quantum dots and quantum wires on novel index surfaces. Four different InP substrate orientations have been examined, namely, (1 1 1)B, (3 1 1)A, and (3 1 1)B and (1 0 0). A rich variety of InAs nanostructures is formed on the surfaces. Quantum wire-like morphology is observed on the (1 0 0) surface, and evident island formation is found on (1 1 1)A and (3 1 1)B by atomic force microscopy. The photoluminescence spectra of InP (1 1 1)A and (3 1 1)B samples show typical QD features with PL peaks in the wavelength range 1.3-1.55 mu m with comparable efficiency. These results suggest that the high-index substrates are promising candidates for production of high-quality self-organized QD materials for device applications. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The theoretical method to design negative refractive index metamaterials by single negative permittivity metamaterials is presented. By designing the electric and magnetic response metamaterials separately, the complexity of the design work can be simplified a lot. For the magnetic response metamaterials, the metallic post structure is adopted. Varying the height of the post, the response wavelength can be adjusted linearly. For electric metamaterials, wire-mesh structure is adopted. The effective material parameters, including refractive index, impedance, permittivity and permeability are given. Such a structure has negative refractive index during a broad frequency band and easy to design.
Resumo:
An index-coupled distributed feedback laser with the sampled grating has been designed and fabricated. The +1(st) order reflection of the sampled grating is utilized for laser single mode operation, which is 1.5329 mu m in the experiment. The sampled grating is formed by a conventional holographic exposure combined with the usual photolithography. The typical threshold current of DFB laser with the sampled grating is 25mA, and the optical output is about 10mW at the injected current of 100mA.
Resumo:
We demonstrated oxide-confined 850-nm vertical-cavity surface-emitting lasers (VCSELs) with a two-dimensional petal-shaped holey structure composed of several annular-sector-shaped holes. Four types of devices with different hole numbers were designed and fabricated. The measured results showed that the larger hole number was beneficial to purifying the lasing mode, and realizing the single-mode operation. The side mode suppression ratio (SMSR) exceeded 30 dB throughout the entire drive current. Mode selective loss mechanism was used to explain the single-mode characteristic. The single-mode devices possessed good beam profiles, and the lowest divergence angle was as narrow as 3.2 degrees (full width at half maximum), attributed to the graded index profile and the shallow etching in the top distributed Bragg reflector (DBR).