963 resultados para Inclusive learning
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The Iowa Department of Education (DE) was appropriated $1.45 million for the development and implementation of a statewide work-based learning intermediary network. This funding was awarded on a competitive basis to 15 regional intermediary networks. Funds received by the regional intermediary networks from the state through this grant are to be used to develop and expand work-based learning opportunities within each region. A match of resources equal to 25 percent was a requirement of the funding. This match could include private donations, in-kind contributions, or public moneys. Funds may be used to support personnel responsible for the implementation of the intermediary network program components.
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
Resumo:
This communication is part of a larger teaching innovation project financed by the University ofBarcelona, whose objective is to develop and evaluate transversal competences of the UB, learningability and responsibility. The competence is divided into several sub-competencies being the ability toanalyze and synthesis the most intensely worked in the first year. The work presented here part fromthe results obtained in phase 1 and 2 previously implemented in other subjects (Mathematics andHistory) in the first year of the degree of Business Administration Degree. In these subjects’ previousexperiences there were deficiencies in the acquisition of learning skills by the students. The work inthe subject of Mathematics facilitated that students become aware of the deficit. The work on thesubject of History insisted on developing readings schemes and with the practical exercises wassought to go deeply in the development of this competence.The third phase presented here is developed in the framework of the second year degree, in the WorldEconomy subject. The objective of this phase is the development and evaluation of the same crosscompetence of the previous phases, from a practice that includes both, quantitative analysis andcritical reflection. Specifically the practice focuses on the study of the dynamic relationship betweeneconomic growth and the dynamics in the distribution of wealth. The activity design as well as theselection of materials to make it, has been directed to address gaps in the ability to analyze andsynthesize detected in the subjects of the first year in the previous phases of the project.The realization of the practical case is considered adequate methodology to improve the acquisition ofcompetence of the students, then it is also proposed how to evaluate the acquisition of suchcompetence. The practice is evaluated based on a rubric developed in the framework of the projectobjectives. Thus at the end of phase 3 we can analyze the process that have followed the students,detect where they have had major difficulties and identify those aspects of teaching that can help toimprove the acquisition of skills by the students. The interest of this phase resides in the possibility tovalue whether tracing of learning through competences, organized in a collaborative way, is a goodtool to develop the acquisition of these skills and facilitate their evaluation.
Resumo:
In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.
Resumo:
Virulent infections are expected to impair learning ability, either as a direct consequence of stressed physiological state or as an adaptive response that minimizes diversion of energy from immune defense. This prediction has been well supported for mammals and bees. Here, we report an opposite result in Drosophila melanogaster. Using an odor-mechanical shock conditioning paradigm, we found that intestinal infection with bacterial pathogens Pseudomonas entomophila or Erwinia c. carotovora improved flies' learning performance after a 1h retention interval. Infection with P. entomophila (but not E. c. carotovora) also improved learning performance after 5 min retention. No effect on learning performance was detected for intestinal infections with an avirulent GacA mutant of P. entomophila or for virulent systemic (hemocoel) infection with E. c. carotovora. Assays of unconditioned responses to odorants and shock do not support a major role for changes in general responsiveness to stimuli in explaining the changes in learning performance, although differences in their specific salience for learning cannot be excluded. Our results demonstrate that the effects of pathogens on learning performance in insects are less predictable than suggested by previous studies, and support the notion that immune stress can sometimes boost cognitive abilities.
Resumo:
La asignatura troncal “Evaluación Psicológica” de los estudios de Psicología y delestudio de grado “Desarrollo humano en la sociedad de la información” de laUniversidad de Girona consta de 12 créditos según la Ley Orgánica de Universidades.Hasta el año académico 2004-05 el trabajo no presencial del alumno consistía en larealización de una evaluación psicológica que se entregaba por escrito a final de curso yde la cual el estudiante obtenía una calificación y revisión si se solicitaba. En el caminohacia el Espacio Europeo de Educación Superior, esta asignatura consta de 9 créditosque equivalen a un total de 255 horas de trabajo presencial y no presencial delestudiante. En los años académicos 2005-06 y 2006-07 se ha creado una guía de trabajopara la gestión de la actividad no presencial con el objetivo de alcanzar aprendizajes anivel de aplicación y solución de problemas/pensamiento crítico (Bloom, 1975)siguiendo las recomendaciones de la Agencia para la Calidad del Sistema Universitariode Cataluña (2005). La guía incorpora: los objetivos de aprendizaje, los criterios deevaluación, la descripción de las actividades, el cronograma semanal de trabajos paratodo el curso, la especificación de las tutorías programadas para la revisión de losdiversos pasos del proceso de evaluación psicológica y el uso del foro para elconocimiento, análisis y crítica constructiva de las evaluaciones realizadas por loscompañeros
Resumo:
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Resumo:
This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.
Resumo:
A reinforcement learning (RL) method was used to train a virtual character to move participants to a specified location. The virtual environment depicted an alleyway displayed through a wide field-of-view head-tracked stereo head-mounted display. Based on proxemics theory, we predicted that when the character approached within a personal or intimate distance to the participants, they would be inclined to move backwards out of the way. We carried out a between-groups experiment with 30 female participants, with 10 assigned arbitrarily to each of the following three groups: In the Intimate condition the character could approach within 0.38m and in the Social condition no nearer than 1.2m. In the Random condition the actions of the virtual character were chosen randomly from among the same set as in the RL method, and the virtual character could approach within 0.38m. The experiment continued in each case until the participant either reached the target or 7 minutes had elapsed. The distributions of the times taken to reach the target showed significant differences between the three groups, with 9 out of 10 in the Intimate condition reaching the target significantly faster than the 6 out of 10 who reached the target in the Social condition. Only 1 out of 10 in the Random condition reached the target. The experiment is an example of applied presence theory: we rely on the many findings that people tend to respond realistically in immersive virtual environments, and use this to get people to achieve a task of which they had been unaware. This method opens up the door for many such applications where the virtual environment adapts to the responses of the human participants with the aim of achieving particular goals.
Resumo:
This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.
Resumo:
This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.
Resumo:
This questionnaire aims to evaluate your experience of taking part in the project you are carrying out at the university. The questionnaire is anonymous and will not take more than 10 minutes of your time to complete. We would appreciate your honest opinion, in order that the data we gather here can be as useful as possible for improving the project.