979 resultados para In Vitro Oocyte Maturation Techniques
Resumo:
Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala(8)-substituted analogues of GLP-1, (Abu(8))GLP-1 and (Val(8) GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu(8))GLP-1 and (Val(8))GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu(8))GLP-1 and (Val(8))GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val(8))GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu(8))GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val(8))GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala(8) in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val(8))GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.
Resumo:
Resistance in Fasciola hepatica to triclabendazole (Fasinex) has emerged in several countries. Benzimidazole resistance in parasitic nematodes has been linked to a single amino acid substitution (phenylalanine to tyrosine) at position 200 on the [beta]-tubulin molecule. Sequencing of [beta]-tubulin cDNAs from triclabendazole-susceptible and triclabendazole-resistant flukes revealed no amino acid differences between their respective primary amino acid sequences. In order to investigate the mechanism of triclabendazole resistance, triclabendazole-susceptible and triclabendazole-resistant flukes were incubated in vitro with triclabendazole sulphoxide (50 [mu]g/ml). Scanning and transmission electron microscopy revealed extensive damage to the tegument of triclabendazole-susceptible F. hepatica, whereas triclabendazole-resistant flukes showed only localized and relatively minor disruption of the tegument covering the spines. Immunocytochemical studies, using an anti-tubulin antibody, showed that tubulin organization was disrupted in the tegument of triclabendazole-susceptible flukes. No such disruption was evident in triclabendazole-resistant F. hepatica. The significance of these findings is discussed with regard to the mechanism of triclabendazole resistance in F. hepatica.
Resumo:
Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.
Resumo:
Bacterial infection primarily with Staphylococcus spp. and Propionibacterium acnes remains a significant complication following total hip replacement. In this in vitro study, we investigated the efficacy of gentamicin loading of bone cement and pre- and postoperative administration of cefuroxime in the prevention of biofilm formation by clinical isolates. High and low initial inocula, representative of the number of bacteria that may be present at the operative site as a result of overt infection and skin contamination, respectively, were used. When a high initial inoculum was used, gentamicin loading of the cement did not prevent biofilm formation by the 10 Staphylococcus spp. and the 10 P. acnes isolates tested. Similarly, the use of cefuroxime in the fluid phase with gentamicin-loaded cement did not prevent biofilm formation by four Staphylococcus spp. and four P. acnes isolates tested. However, when a low bacterial inoculum was used, a combination of both gentamicin-loaded cement and cefuroxime prevented biofilm formation by these eight isolates. Our results indicate that this antibiotic combination may protect against infection after intra-operative challenge with bacteria present in low numbers as a result of contamination from the skin but would not protect against bacteria present in high numbers as a result of overt infection of an existing implant.