990 resultados para ITS-2
Resumo:
The aim of this study was to identify isolates of Rhizoctonia solani causing hypocotyl rot and foliar blight in soybean (Glycine max) in Brazil by the nucleotide sequences of ITS-5.8S regions of rDNA. The 5.8S rDNA gene sequence (155 bp) was highly conserved among all isolates but differences in length and nucleotide sequence of the ITS1 and ITS2 regions were observed between soybean isolates and AG testers. The similarity of the nucleotide sequence among AG-1 IA isolates, causing foliar blight, was 95.1-100% and 98.5-100% in the ITS1 and ITS2 regions, respectively. The nucleotide sequence similarity among subgroups IA, IB and IC ranged from 84.3 to 89% in ITS1 and from 93.3 to 95.6% in ITS2. Nucleotide sequence similarity of 99.1% and 99.3-100% for ITS1 and ITS2, respectively, was observed between AG-4 soybean isolates causing hypocotyl rots and the AG-4 HGI tester. The similarity of the nucleotide sequence of the ITS-5.8S rDNA region confirmed that the R. solani Brazilian isolates causing foliar blight are AG-1 IA and isolates causing hypocotyl rot symptoms are AG-4 HGI. The ITS-5.8S rDNA sequence was not determinant for the identification of the AG-2-2 IIIB R. solani soybean isolate.
Resumo:
The ligand di-2-pyridyl ketone benzoylhydrazone (DPKBH) is widely used for the determination of transition metal ions in environmental samples. Due to its low solubility in water it is used in aqueous-ethanol (1:1) solvent and for higher sensitivity the pH must be properly adjusted. The properties of DPKBH solutions must be known at different ethanol-water percentages in order to achieve higher sensitivity and/or selectivity for metal analysis. The acid-base behavior of this reagent in aqueous-ethanol solvent and the dissociation/ionization constants (pK1 and pK2) of DPKBH have been determined in different aqueous-ethanol solvent mixtures (10, 20, 30 and 50 % V/V of ethanol) from potentiometric titrations at 25.0 ± 0.1° C. As the amount of ethanol increases from 10 to 30% the pK1 and pK2 values increased, but they decreased in 50% of the organic solvent. The results are correlated with the medium composition and its effects.
Resumo:
An evaluation of hydration and thermal decomposition of HAlg and its sodium salt is described using thermogravimetry (TG) and differential scanning calorimetry (DSC). TG curves in N2 and air, were obtained for alginic acid showed two decomposition steps attributed to loss of water and polymer decomposition respectively. The sodium alginate decomposed in three steps. The first attributed to water loss, followed by the formation of a carbonaceous residue and finally the Na2CO3. DSC curves presented peaks in agreement with the TG data. In the IR alginic acid presented bands at 1730 and 1631 cm-1, while sodium alginate presented a doublet at 1614 e 1431 cm-1, evidencing the presence of salified carboxyl groups.
Resumo:
E-Lychnophoric acid 1, its derivative ester 2 and alcohol 3 killed 100% of trypomastigote blood forms of Trypanosoma cruzi at the concentrations of 13.86, 5.68, and 6.48 µg/mL, respectively. Conformational distribution calculations (AM1) of 1, 2 and 3 gave minimum energies for the conformers a, b, c, and d, which differ from each other only in the cyclononene ring geometry. Calculations (DFT/BLYP/6-31G*) of geometry optimization and chemical properties were performed for conformers of 1, 2, and 3. The theoretical results were numerically compared to the trypanocidal activity. Calculated values of atomic charge, orbital population, and vibrational frequencies showed that the C-4-C-5 pi-endocyclic bond does not affect the trypanocidal activity of the studied compounds. Nevertheless, the structure of the group at C-4 strongly influences the activity. However, the theoretical results indicated that the intra-ring (C-1 and C-9) and pi-exocycle (C-8 and C-14) carbons of caryophyllene-type structures promote the trypanocidal activity of these compounds.
Resumo:
A sensitive and alternative method for the spectrophotometric determination of chromium(III) based on the formation of chromium(III)/azide complexes was established by investigating a new band in the ultraviolet region. The best experimental conditions for the analytical determination of this metallic ion were: ligand and perchloric acid analytical concentration = 493 and 12.0 mmol L-1, respectively; aqueous medium; T = 25.0 ºC; contact time = 1 hour. The maximum molar absorptivity coefficient occurred at 287 nm (average 1.481 ± 0.008 ´ 10(4) L mol-1 cm-1), leading to the determination of metal ion concentrations one hundred times lower than the ones formerly determined in the visible region. The system obeys Beer's Law and is suitable for chromium determination in the 0.702-2.81 mg L-1 concentration range (15-65% T, 1.00 cm-width quartz cells). Analytical applications of the current method were tested with a nutritional supplement containing chromium. Results were compared with those obtained with atomic absorption spectrometry.
Resumo:
MgO is an important inorganic material, which can be used in many aspects, such as catalyst, toxic-waste remediation agent, adsorbent, and others. In order to make use of MgO, nano-MgO was prepared by ultrasonic method using Mg (CH3COO)2.2H2O as precursor, NaOH aqueous solution as precipitant in this paper. Effect factors on MgO nano-particle size were investigated. Characteristics of samples were measured by TGA, XRD, TEM, and others techniques. The results showed that the size of nano-MgO about 4 nm could be obtained under the following conditions (ultrasonic time 20 min, ultrasonic power 250 W, titration rate of NaOH 0.25 mL/min, NaOH concentration 0.48 mol/L, calcinations temperature 410 °C, calcination time 1.5 h, heating rate of calcination 5 °C/min). It was a very simple and effective method to prepare nano-MgO.
Resumo:
The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.
Resumo:
A simple, sensitive and reproducible spectrophotometric method was developed for the determination of sitagliptin phosphate in bulk and in pharmaceutical formulations. The proposed method is based on condensation of the primary amino group of sitagliptin phosphate with acetyl acetone and formaldehyde producing a yellow colored product, which is measured spectrophotometrically at 430nm. The color was stable for about 1 hour. Beer's law is obeyed over a concentration range of 5-25 µg/ml. The apparent molar absorptivity and Sandell sensitivity values are 1.067 x 10(4) Lmol-1cm-1 and 0.0471 µgcm-2 respectively. All the variables were studied to optimize the reaction conditions. No interference was observed in the presence of common pharmaceutical excipients. The validity of the method was tested by analyzing sitagliptin phosphate in its pharmaceutical preparations. Good recoveries were obtained. The developed method was successfully employed for the determination of sitagliptin phosphate in various pharmaceutical preparations.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
Realizou-se estudo para caracterização e verificação da diversidade genética de Phytophthora parasitica, agente causador da gomose dos citros. Quatorze isolados de Phytophthora parasitica, provenientes do Estado de São Paulo, foram seqüenciados a partir das regiões internas transcritas (ITS1 e ITS2) do gene 5.8S. Obtiveram-se seqüências de 812 pb a 860 pb que foram comparadas com seqüências de outras espécies de Phytophthora spp depositadas no NCBI. Foram feitos estudos filogenéticos, utilizando-se o método "neighbor-joining" com 1000 "bootstrap" e construído o dendrograma mais representativo. Obtiveram-se os resultados de 98,88% a 100% de similaridade genética entre os 14 isolados paulistas, e 99,5% a 98,8% entre estes e a seqüência de P. nicotianae (gi| 8927482) obtida do GenBank NCBI.
Resumo:
O meloeiro (Cucumis melo L.) é uma frutífera largamente cultivada no Brasil, principalmente no nordeste brasileiro, onde é produzida principalmente para a exportação. Plantas da família do meloeiro, como pepino e abóbora, podem ser severamente afetadas pelo oídio, causado por Podosphaera xanthii.. Este fungo apresenta diversas raças fisiológicas cuja correta identificação é importante para o manejo da doença, já que o uso de variedades resistentes é o método mais eficaz de seu controle. No entanto, a identificação destas raças por meio da prática tradicional de inoculações em uma série diferenciadora de variedades de meloeiro é laboriosa e passível de erros. Devido a isso, um método alternativo seria o uso de marcadores moleculares para determinar de forma rápida a identidade das raças. O objetivo deste estudo foi o de analisar a variabilidade entre isolados de P. xanthii previamente classificados em raças através da técnica de AFLP e do seqüenciamento da região ITS 5.8S do rDNA. A partir dos marcadores AFLP obteve-se um dendrograma no qual não houve separação dos isolados quanto às suas raças, origem geográfica ou hospedeiro de origem. Com esta técnica verificou-se alta variabilidade entre isolados, com similaridade genética máxima de 69% e similaridade mínima de 23%. Ao contrário da informação gerada por AFLP, não foi observada variação na sequência da região ITS 5.8S entre isolados. Desta forma, a análise por AFLP indicou que os isolados tem composição genética heterogênea muito embora este fato não tenha sido evidenciado pelo sequenciamento da região ITS.
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
Translated into Finnish by Joh. Bäckwall.
Resumo:
Protein homeostasis is essential for cells to prosper and survive. Various forms of stress, such as elevated temperatures, oxidative stress, heavy metals or bacterial infections cause protein damage, which might lead to improper folding and formation of toxic protein aggregates. Protein aggregation is associated with serious pathological conditions such as Alzheimer’s and Huntington’s disease. The heat shock response is a defense mechanism that protects the cell against protein-damaging stress. Its ancient origin and high conservation among eukaryotes suggest that the response is crucial for survival. The main regulator of the heat shock response is the transcription factor heat shock factor 1 (HSF1), which induces transcription of genes encoding protective molecular chaperones. In vertebrates, a family of four HSFs exists (HSF1-4), with versatile functions not only in coping with acute stress, but also in development, longevity and cancer. Thus, knowledge of the HSFs will aid in our understanding on how cells survive suboptimal circumstances, but will also provide insights into normal physiological processes as well as diseaseassociated conditions. In this study, the function and regulation of HSF2 have been investigated. Earlier gene inactivation experiments in mice have revealed roles for HSF2 in development, particularly in corticogenesis and spermatogenesis. Here, we demonstrate that HSF2 holds a role also in the heat shock response and influences stress-induced expression of heat shock proteins. Intriguingly, DNA-binding activity of HSF2 upon stress was dependent on the presence of intact HSF1, suggesting functional interplay between HSF1 and HSF2. The underlying mechanism for this phenomenon could be configuration of heterotrimers between the two factors, a possibility that was experimentally verified. By changing the levels of HSF2, the expression of HSF1-HSF2 heterotrimer target genes was altered, implementing HSF2 as a modulator of HSF-mediated transcription. The results further indicate that HSF2 activity is dependent on its concentration, which led us to ask the question of how accurate HSF2 levels are achieved. Using mouse spermatogenesis as a model system, HSF2 was found to be under direct control of miR-18, a miRNA belonging to the miR-17~92 cluster/Oncomir-1 and whose physiological function had remained unclear. Investigations on spermatogenesis are severely hampered by the lack of cell systems that would mimic the complex differentiation processes that constitute male germ cell development. Therefore, to verify that HSF2 is regulated by miR-18 in spermatogenesis, a novel method named T-GIST (Transfection of Germ cells in Intact Seminiferous Tubules) was developed. Employing this method, the functional consequences of miR-18-mediated regulation in vivo were demonstrated; inhibition of miR- 18 led to increased expression of HSF2 and altered the expression of HSF2 target genes Ssty2 and Speer4a. Consequently, the results link miR-18 to HSF2-mediated processes such as germ cell maturation and quality control and provide miR-18 with a physiological role in gene expression during spermatogenesis.Taken together, this study presents compelling evidence that HSF2 is a transcriptional regulator in the heat shock response and establishes the concept of physical interplay between HSF2 and HSF1 and functional consequences thereof. This is also the first study describing miRNA-mediated regulation of an HSF.