972 resultados para IONIC INTERACTIONS
Resumo:
The magnetic interactions in Ni-doped ZnO are calculated using GGA and GGA + U method of density functional theory. The following three cases: (i) Ni-doped ZnO, (ii) (Ni, Al)-codoped ZnO, and (iii) (Ni, Li)-codoped ZnO are studied. The ferromagnetic ordering is always favorable for the three cases within GGA method. However, the ferromagnetic state is sometimes favorable after treating within the method of GGA + U. The GGA underestimates the correlated interactions especially when the Ni ions align directly to each other. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity.
Resumo:
Lipids are essential constituents of contemporary living cells, serving as structural molecules that are necessary to form membranous compartments. Amphiphilic lipid-like molecules may also have contributed to prebiotic chemical evolution by promoting the synthesis, aggregation and cooperative encapsulation of other biomolecules. The resulting compartments would allow systems of molecules to be maintained that represent microscopic experiments in a natural version of combinatorial chemistry. Here we address these possibilities and describe recent results related to interactions between amphiphiles and other biomolecules during early evolution toward the first living cells.
Resumo:
We investigated estuarine spatial and temporal overlap of wild and marked hatchery chum salmon (Oncorhynchus keta) fry; the latter included two distinct size groups released near the Taku River estuary (Taku Inlet) in Southeast Alaska (early May releases of ~ 1.9 g and late May releases of ~ 3.9 g wet weight). Our objectives were to compare abundance, body size, and condition of wild chum salmon fry and hatchery chum salmon fry raised under early and late rearing strategies in different habitats of Taku Inlet and to document environmental factors that could potentially explain the distribution, size, and abundance of these chum salmon fr y. We used a sampling design stratified into inner and outer inlet and neritic and littoral habitats. Hatchery fry were rare in the inner estuary in both years but outnumbered wild fry 20:1 in the outer estuary. Hatchery fry were significantly larger than wild fry in both littoral and neritic samples. Abundances of wild and hatchery fry were positively correlated in the outer inlet, indicating the formation of mixed schools of hatchery and wild fry. Spatial and temporal overlap was greatest between wild and early hatchery fry in the outer inlet in both habitats. The early hatchery release coincided with peak abundances of wild fry in the outer inlet, and the distribution of wild and early hatchery fry overlapped for about three weeks. Our results demonstrate that the timing of release of hatchery fry may affect interactions with wild fry.
Resumo:
The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.
Resumo:
Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.
Resumo:
MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its -hole region while -electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al--electrons links as well as the interaction in the BH3-C2H2 complex. The triel--electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of Atoms in Molecules as well as the Natural Bond Orbitals approach are applied here to characterize the -hole--electrons interactions.
Resumo:
No presente trabalho foram utilizados micro-organismos fotoautotróficos para a bioacumulação de cobre em regime de batelada. Para tal, utilizou-se micro-organismos dos gêneros Ankistrodesmus, Golenkinia, Monoraphidium e Scenedesmus, em função da sua disponibilidade, facilidade de cultivo e diferenças morfológicas. Ensaios preliminares foram realizados utilizando diferentes concentrações de biossorvente, com o intuito de verificar a influência deste fator na eficiência do processo de captação. Os testes realizados em batelada incluíram também o estudo cinético e do equilíbrio, nos quais foi possível verificar que para todos os gêneros testados, o processo de captação do metal em soluções diluídas atingiu o equilíbrio quase instantaneamente. Em soluções de Cu2+ mais concentradas, observou-se diferenças entre os gêneros estudados, no tempo necessário para estabelecimento do equilíbrio. Além disso, observou-se uma alta eficiência no processo de captação de íons Cu2+ em solução por parte dos micro-organismos, com elevada captação de metal por grama de biomassa. As diferenças morfológicas entre os gêneros pareceram não influenciar significativamente a cinética e o equilíbrio do processo. Os ensaios em batelada foram realizados também empregando-se células de Golenkinia imobilizadas em alginato de cálcio, além de testes com o próprio alginato isento de micro-organismos como experimento-controle afim de verificar a influencia da imobilização nos parâmetros cinéticos e na capacidade de captação. A partir dos resultados obtidos nos ensaios em batelada com todos os biossorventes, testou-se em cada caso a aplicação de modelos cinéticos (pseudo 1 e 2 ordem) e modelos de equilíbrio (isoterma de Langmuir e Freundlich). Verificou-se que para o 4 gêneros que empregando-se células livres o modelo cujo os resultados se adequaram melhor foi o de Langmuir, enquanto que para células imobilizadas ambos modelos se mostraram adequados