993 resultados para IAC 576-70
Resumo:
The distribution of calcareous dinoflagellate cysts in surface sediments from the Mediterranean Sea was quantitatively analysed. The samples contain 11 cyst species and the vegetative coccoid Thoracosphaera heimii. Cyst abundance increases towards the deeper parts of the basins and is generally higher in the eastern Mediterranean Sea. Three major distribution characteristics exist: (1) different assemblages in oceanic and neritic regions, (2) little agreement with the associations of areas studied so far like the Atlantic Ocean, and (3) a unique oceanic assemblage in the eastern Mediterranean Sea. A gradual change in cyst assemblages from the western to the eastern Mediterranean Sea was observed and statistically compared with the main environmental gradients in the upper water column. Temperature, nitrate concentration and possibly salinity appear to be the most important factors controlling cyst production. Three groups containing cysts with similar environmental preferences can be distinguished: (1) an eastern Mediterranean group related to relatively high temperature and salinity but low nitrate concentration, (2) a group of more or less consistently abundant cosmopolitan species tolerating or even preferring relatively low temperature and salinity but high nitrate concentration, and (3) a group containing species that are possibly adapted to neritic environments and have probably been transported from coastal areas into the studied regions. In contrast to other calcareous plankton, calcareous dinoflagellate cysts correlate strongly with the main environmental gradients in the Mediterranean Sea, bearing a high potential for palaeoenvironmental reconstructions.
Resumo:
Whole-rock basalt samples from the upper half of Deep Sea Drilling Project Hole 504B have oxygen-isotope compositions typical of mid-ocean-ridge basalts which have experienced a moderate degree of low-temperature alteration by sea water. By contrast, d18O values in the lower half of the hole correspond to basalts which have experienced almost no detectable oxygen-isotope alteration. These observations suggest that the overall water/rock ratio was lower in the lower half of the drilled crust. A correlation between d18O values and 87Sr/86Sr ratios suggests that the water/rock ratio, rather than temperature variation, was the main factor determining basalt d18O values. Hydrogen-isotope data appear to be consistent with a low water/rock ratio in the lower part of the crust.
(Table 6) Minerals and their aggregates from alteration zones and veins in DSDP Hole 70-504B basalts