956 resultados para Hydrogen-sulfide
Resumo:
In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2)-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.
Resumo:
Pt/TiO2 sensitized by the cheap and organic ortho-dihydroxyl-9,10-anthraquinone dyes, such as Alizarin and Alizarin Red, achieved a TON of approximately 10 000 (TOF > 250 h−1 for the first ten hours) during >80 hours of visible light irradiation (>420 nm) for photocatalytic hydrogen evolution when triethanolamine was used as the sacrificial donor. The stability and activity enhancements can be attributed to the two highly serviceable redox reactions involving the 9,10-dicarbonyl and ortho-dihydroxyl groups of the anthracene ring, respectively
Resumo:
It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.
Resumo:
By increasing the density of exposed active edges, the perpendicularly oriented structure of MoSe2 nanosheets facilitates ion/electrolyte transport at the electrode interface and minimizes the restacking of nanosheets, while the graphene improves the electrical contact between the catalyst and the electrode. This makes the MoSe2/graphene hybrid perfect as a catalyst in the hydrogen evolution reaction (HER). It shows a greatly improved catalytic activity compared with bare MoSe2 nanosheets.
Resumo:
In an attempt to generate supramolecular assemblies able to function as self-healing hydrogels, a novel ureido-pyrimidinone (UPy) monomer, 2-(N ′-methacryloyloxyethylureido)-6-(1-adamantyl)-4[1H]-pyrimidinone, was synthesized and then copolymerized with N,N-dimethylacrylamide at four different feed compositions, using a solution of lithium chloride in N,N-dimethylacetamide as the polymerization medium. The assembling process in the resulting copolymers is based on crosslinking through the reversible quadruple hydrogen bonding between side-chain UPy modules. The adamantyl substituent was introduced in order to create a “hydrophobic pocket” that may protect the hydrogen bonds against the disruptive effect of water molecules. Upon hydration to equilibrium, all copolymers generated typical hydrogels when their concentration in the hydrated system was at least 15%. The small-deformation rheometry showed that all hydrated copolymers were hydrogels that maintained a solid-like behavior, and that their extrusion through a syringe needle did not affect significantly this behavior, suggesting a self-healing capacity in these materials. An application as injectable substitutes for the eye's vitreous humor was proposed
Resumo:
The growth of Thiobacillus ferrooxidans, their attachment to sulfide minerals and detachment during bacterial leaching are discussed in this paper. Growth of the bacteria has been measured by cell count of the supernatants of the mineral suspensions while attachment to minerals and detachment were measured by periodic protein estimations for both the solid and liquid phases, Even in the absence of the nutrients, bacterial growth occurs and increases the available cell population during leaching; such growth was greater in sphalerite suspensions than in galena suspensions, The bacterial attachment studies suggest that more cells are attached onto galena mineral surface than to sphalerite surface. The mechanisms of bacterial attachment and detachment are discussed.
Resumo:
The anhydrous salts morpholinium (tetrahydro-2-H-1,4-oxazine) phenxyacetate, C4H10NO+ C8H7O3- (I), (4-fluorophenoxy)acetate, C4H10NO+ C8H6FO3- (II) and isomeric morpholinium (3,5-dichlorophenoxy)acetate (3,5-D) (III) and morpholinium (2,4-dichlorophenoxy)acetate (2,4-D), C4H10NO+ C8H5Cl2O3- (IV), have been determined and their hydrogen-bonded structures are described. In the crystals of (I), (III) and (IV), one of the the aminium H atoms is involved in a three-centre asymmetric cation-anion N-H...O,O' R2/1(4) hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. With the structure of (II), the primary N---H...O interaction is linear. In the structures of (I), (II) and (III), the second N-H...O(carboxyl) hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV), the ion pairs are linked though inversion-related N-H...O hydrogen bonds [graph set R2/4(8)], giving a cyclic heterotetrameric structure.
Resumo:
The crystal structure determination of the heptapeptide Boc-Val-Ala-Leu-Aib-Val-Ala-Phe-OMe reveals two peptide helices in the asymmetric unit, Crystal parameters are: space group P2(1), a = 10.356(2) Angstrom, b = 19.488(5) Angstrom, c = 23.756(6) Angstrom, beta = 102.25(2)degrees), V = 4685.4 Angstrom(3), Z = 4 and R = 5.7% for 7615 reflections [I>3 sigma(I)]. Both molecules adopt largely alpha-helical conformations with variations at the C-terminus, Helix type Is determined by analysing both 4-->1 and 5-->1 hydrogen-bond interactions and comparison with the results of analysis of protein structures. The presence of two 4-->1 hydrogen-bond interactions, besides four 5-->1 interact ions in both the conformations provides an opportunity to characterize bifurcated hydrogen bonds at high resolution, Comparison of the two helical conformations with related peptide structures suggests that distortions at the C-terminus are more facile than at the N-terminus.
Resumo:
Recently, halogen···halogen interactions have been demonstrated to stabilize two-dimensional supramolecular assemblies at the liquid–solid interface. Here we study the effect of changing the halogen, and report on the 2D supramolecular structures obtained by the adsorption of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) and 2,4,6-tris(4-iodophenyl)-1,3,5-triazine (TIPT) on both highly oriented pyrolytic graphite and the (111) facet of a gold single crystal. These molecular systems were investigated by combining room-temperature scanning tunneling microscopy in ambient conditions with density functional theory, and are compared to results reported in the literature for the similar molecules 1,3,5-tri(4-bromophenyl)benzene (TBPB) and 1,3,5-tri(4-iodophenyl)benzene (TIPB). We find that the substrate exerts a much stronger effect than the nature of the halogen atoms in the molecular building blocks. Our results indicate that the triazine core, which renders TBPT and TIPT stiff and planar, leads to stronger adsorption energies and hence structures that are different from those found for TBPB and TIPB. On the reconstructed Au(111) surface we find that the TBPT network is sensitive to the fcc- and hcp-stacked regions, indicating a significant substrate effect. This makes TBPT the first molecule reported to form a continuous monolayer at room temperature in which molecular packing is altered on the differently reconstructed regions of the Au(111) surface. Solvent-dependent polymorphs with solvent coadsorption were observed for TBPT on HOPG. This is the first example of a multicomponent self-assembled molecular networks involving the rare cyclic, hydrogen-bonded hexamer of carboxylic groups, R66(24) synthon.
Resumo:
The thermal degradation processes of two sulfur polymers, poly(xylylene sulfide) (PXM) and poly(xylylene disulfide) (PXD), were investigated in parallel by direct pyrolysis mass spectrometry (DPMS) and flash pyrolysis GC/MS (Py-GC/MS). Thermogravimetric data showed that these polymers decompose with two separate steps in the temperature ranges of 250-280 and 600-650 degrees C, leaving a high amount of residue (about 50% at 800 degrees C). The pyrolysis products detected by DPMS in the first degradation step of PXM and PXD were terminated by three types of end groups, -CH3, -CH2SH, and -CH=S, originating from thermal cleavage reactions involving a series of homolytic chain scissions followed by hydrogen transfer reactions, generating several oligomers containing some intact xylylene sulfide repeating units. The presence of pyrolysis compounds containing some stilbene-like units in the first degradation step has also been observed. Their formation has been accounted for with a parallel cleavage involving the elimination of H2S from the PXM main chains. These unsaturated units can undergo cross-linking at higher temperatures, producing the high amount of char residue observed. The thermal degradation compounds detected by DPMS in the second decomposition step at about 600-650 degrees C were constituted of condensed aromatic molecules containing dihydrofenanthrene and fenanthrene units. These compounds might be generated from the polymer chains containing stilbene units, by isomerization and dehydrogenation reactions. The pyrolysis products obtained in the Py-GC/MS of PXM and PXD at 610 degrees C are almost identical. The relative abundance in the pyrolysate and the spectral properties of the main pyrolysis products were found to be in generally good agreement with those obtained by DPMS. Polycyclic aromatic hydrocarbons (PAHs) were also detected by Py-GC/MS but in minor amounts with respect to DPMS. This apparent discrepancy was due to the simultaneous detection of PAHs together with all pyrolysis products in the Py-GC/MS, whereas in DPMS they were detected in the second thermal degradation step without the greatest part of pyrolysis compounds generated in the first degradation step. The results obtained by DPMS and PSI-GC/MS experiments showed complementary data for the degradation of PXM and PXD and, therefore, allowed the unequivocal formulation of the thermal degradation mechanism for these sulfur-containing polymers.
Resumo:
Three aspects of crystal engineering in molecular crystals are presented to emphasize the role of intermolecular interactions and factors influencing crystal packing. Hydrogen bonded tartrate-amine complexes have been analyzed with the propensity for formation of multidirectional hydrogen bonding as a key design element in the generation of materials for second harmonic generation (SHG). The invariance of the framework in DBT and its possible implications on SHG is outlined. The role of Fluorine in orienting molecules of coumarins, styrylcoumarins and butadienes for photodimerization is described with particular emphasis on its steering capability. Usage of coumarin as an design element for the generation of polymorphs of substituted styrylcoumarins is examined with specific examples.
Resumo:
A method has been developed for the removal of chromium using ferrous sulphide generated in situ. The effects of experimental parameters such as pH, reagent dosages, interference from cations and chelating agents have been investigated. Under optimum conditions, removal efficiencies of 99 and 97% for synthetic and industrial samples have been obtained. The method offers all the advantages of sulphide precipitation process and can be adopted easily for industrial effluents.
Resumo:
Graphitic carbon nitride (g-C3N4), as a promising metal-free catalyst for photo-catalytic and electrochemical water splitting, has recently attracted tremendous research interest. However, the underlying catalytic mechanism for the hydrogen evolution reaction (HER) is not fully understood. By using density functional theory calculations, here we have established that the binding free energy of hydrogen atom (ΔGH∗0) on g-C3N4 is very sensitive to mechanical strain, leading to substantial tuning of the HER performance of g-C3N4 at different coverages. The experimentally-observed high HER activity in N-doped graphene supported g-C3N4 (Zheng et al., 2014) is actually attributed to electron-transfer induced strain. A more practical strategy to induce mechanical strain in g-C3N4 is also proposed by doping a bridge carbon atom in g-C3N4 with an isoelectronic silicon atom. The calculated ΔGH∗0 on the Si-doped g-C3N4 is ideal for HER. Our results indicate that g-C3N4 would be an excellent metal-free mechano-catalyst for HER and this finding is expected to guide future experiments to efficiently split water into hydrogen based on the g-C3N4 materials.
Resumo:
The Zeeman effect of chlorine nuclear quadrupole resonance in polycrystalline samples of 2,6-, 2,5 and 3,5-dichlorophenol has been investigated at room temperature in order to study the effect of hydrogen bonding on the electric field gradient asymmetry parameter n. While the two n.q.r. lines in 3,5-dichlorophenol gave an asymmetry parameter of 10%, those in 2,6- and 2,5-dichlorophenol gave different values of n for the two chlorines. The chlorine atom which is ortho to the OH group and involved in hydrogen bonding (i.e., corresponding to the low frequency line) gave an asymmetry parameter of 0.21 in 2,6-dichlorophenol and 0.17 in 2,5-dichlorophenol while the other chlorine (i.e., corresponding to the high frequency line) gave a lower value of 0.12 in 2,6-dichlorophenol and 0.11 in 2,5-dichlorophenol. These values of n are discussed in terms of hydrogen bonding and bond parameters.
Resumo:
Mossbauer effect and X-ray measurements are carried out on product samples of the thermogravimetric analysis (TGA) and isothermal decomposition in hydrogen of homogeneously mixed ferrous nickel oxalates with different iron to nickel ratios. The formation of Fe-Ni alloy is obtained at considerably lower temperatures (z 300 "C) in each case. The Fe-Ni alloys obtained shift from iron-rich to nickel-rich composition as the nickel ratio in the mixed metal oxalates is increased. The formation of Pe-Ni Invar from mixed metal oxalate with Fe:Ni = 1:l is indicated in the early stages but not from those with Fe:Ni = 2: 1 or 64:36. An Produktproben von homogen verteilten Eisen-Nickeloxalaten mit unterschiedlichem Eisen- Nickel-Verhaltnis nach thermogravimetrischer Analyse (TGA) und isothermem Zerfall in Wasserst off werden Mollbauereffekt- und Rontgenmessnngen durchgefuhrt. In allen Fiillen wird die Bildung der Fe-Ni-Legierung bei betriichtlich niedrigeren Temperaturen (= 300 "C) erhalten. Die erhaltenen Fe-Ni-Legierungen verschieben sich von der eisenreichen zur nickelreichen Zusrtmmensetzung, wenn das Nickelverhaltnis in dem BIetall-Mischoxalat erhoht wird. Die Bildung der Fe-Ni-lnvar-Legierung aus dem Metall-Mischoxalat mit Fe:Ni = 1 : 1 wird in fruhen Zu Zustanden beobachtet, iedoch nicht aus Oxalaten mit Fe:Ni = 2:1 oder 64:36.