941 resultados para Hydrogen-Ion Concentration
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.
Resumo:
While aggregate level pay equity comparisons between Australia and the UK confirm expectations based on their different wage distributions and regulatory systems, observation of trends and occupational level analysis reveal additional complexity. Our analysis suggests the need for a multi-faceted approach to closing the average gender pay gap.
Resumo:
The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Large (>1600 mum), ingestively masticated particles of bermuda grass (Cynodon dactylon L. Pers.) leaf and stem labelled with Yb-169 and Ce-144 respectively were inserted into the rumen digesta raft of heifers grazing bermuda grass. The concentration of markers in digesta sampled from the raft and ventral rumen were monitored at regular intervals over approximately 144 h. The data from the two sampling sites were simultaneously fitted to two pool (raft and ventral rumen-reticulum) models with either reversible or sequential flow between the two pools. The sequential flow model fitted the data equally as well as the reversible flow model but the reversible flow model was used because of its greater application. The reversible flow model, hereafter called the raft model, had the following features: a relatively slow age-dependent transfer rate from the raft (means for a gamma 2 distributed rate parameter for leaf 0.0740 v. stem 0.0478 h(-1)), a very slow first order reversible flow from the ventral rumen to the raft (mean for leaf and stem 0.010 h(-1)) and a very rapid first order exit from the ventral rumen (mean of leaf and stem 0.44 h(-1)). The raft was calculated to occupy approximately 0.82 total rumen DM of the raft and ventral rumen pools. Fitting a sequential two pool model or a single exponential model individually to values from each of the two sampling sites yielded similar parameter values for both sites and faster rate parameters for leaf as compared with stem, in agreement with the raft model. These results were interpreted as indicating that the raft forms a large relatively inert pool within the rumen. Particles generated within the raft have difficulty escaping but once into the ventral rumen pool they escape quickly with a low probability of return to the raft. It was concluded that the raft model gave a good interpretation of the data and emphasized escape from and movement within the raft as important components of the residence time of leaf and stem particles within the rumen digesta of cattle.
Resumo:
Carbon isotope composition (delta C-13), oxygen isotope composition (delta O-18), and nitrogen concentration (N-mass) of branchlet tissue at two canopy positions were assessed for glasshouse seedlings and 9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 22 open-pollinated families grown in 5 blocks of a progeny test at a water-limited and nitrogen-deficient site in southeastern Queensland, Australia. Significant variations in canopy delta C-13, delta O-18, and N-mass existed among the 9-year-old hoop pine families, with a heritability estimate of 0.72 for branchlet delta C-13 from the upper inner canopy position. There was significant variation in canopy delta C-13 of glasshouse seedlings between canopy positions and among the families, with a heritability estimate of 0.66. The canopy delta C-13 was positively related to canopy N-mass only for the upper outer crown in the field (R = 0.62, p < 0.001). Phenotypic correlations existed between tree height and canopy delta C-13 (R = 0.37-0.41, p < 0.001). Strong correlations were found between family canopy delta C-13 at this site and those at a wetter site and between field canopy delta C-13 and glasshouse seedling delta C-13. The mechanisms of the variation in canopy delta C-13 are discussed in relation to canopy photosynthetic capacity as reflected in the N-mass and stomatal conductance as indexed by canopy delta O-18.
Resumo:
The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.
Resumo:
Calcium precipitation can have a number of effects on the performance of high-rate anaerobic performance including cementing of the sludge bed, limiting diffusion, and diluting the active biomass. The aim of this study was to observe the influence of precipitation in a stable full-scale system fed with high-calcium paper factory wastewater. Granules were examined from an upflow anaerobic sludge blanket reactor (volume 1,805 m(3)) at a recycled paper mill with a loading rate of 5.7-6.6 kgCOD.m(-3).d(-1) and influent calcium concentration of 400-700 gCa(.)m(-3). The granules were relatively small (1 mm), with a 200-400 mum core of calcium precipitate as observed with energy dispersive X-ray spectroscopy. Compared to other granules, Methanomicrobiales not Methanobacteriales were the dominant hydrogen or formate utilisers, and putative acidogens were filamentous. The strength of the paper mill fed granules was very high when compared to granules from other full-scale reactors, and a partial linear correlation between granule strength and calcium concentration was identified.
Resumo:
Electrical conductivity versus dopant ionic radius studies in zirconia- and ceria-based, solid oxide fuel cell (SOFC) electrolyte systems have shown that oxygen-ion conductivity is highest when the host and dopant ions are similar in size [J. Am. Ceram. Soc. 48 (1965) 286; Solid State Ionics 37 (1989) 67; Solid State Ionics 5 (1981) 547]. Under these conditions, it is thought that the conduction paths within the crystal lattice become less distorted [Solid State Ionics 8 (1983) 201]. In this study, binary ZrO2-M2O3 unit cells were expanded, via the partial substitution of Ce+4 for Zr+4 into the lattice, in an attempt to identify new, ternary, zirconia/ceria-based electrolyte systems with enhanced electrical conductivity. The compositions Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Yb, Sc) were prepared using traditional solid state techniques. Bulk phase characterisation and precise lattice parameter measurements were performed with X-ray diffraction techniques. Four-probe DC conductivity measurements between 400 and 900 degreesC showed that the dopant-ion radius influenced electrical conductivity. The conductivity versus dopant-ion radius trends previously observed in zirconia-based, binary systems are clearly apparent in the ternary systems investigated in this study. The addition of ceria was found to have a negative influence on the electrical conductivity over the temperature range 400-900 degreesC. It is suggested that distortion of the oxygen-ion conduction path by the presence of the larger M+3 and Ce+4 species (relative to Zr+4) is the reason for the decreasing electrical conductivity as a function of increasing dopant size and ceria addition, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Crystal structures have been determined for free Escherichia coli hypoxanthine phosphoribosyltransferase (HPRT) (2.9 Angstrom resolution) and for the enzyme in complex with the reaction products, inosine 5'-monophosphate (IMP) and guanosine 5-monophosphate (GMP) (2.8 Angstrom resolution). Of the known 6-oxopurine phosphoribosyltransferase (PRTase) structures, E. coli HPRT is most similar in structure to that of Tritrichomonas foetus HGXPRT, with a rmsd for 150 Calpha atoms of 1.0 Angstrom. Comparison of the free and product bound structures shows that the side chain of Phe156 and the polypeptide backbone in this vicinity move to bind IMP or GMP. A nonproline cis peptide bond, also found in some other 6-oxopurine PRTases, is observed between Leu46 and Arg47 in both the free and complexed structures. For catalysis to occur, the 6-oxopurine PRTases have a requirement for divalent metal ion, Usually Mg2+ in vivo. In the free structure, a Mg2+, is coordinated to the side chains of Glu103 and Asp104. This interaction may be important for stabilization of the enzyme before catalysis. E. coli HPRT is unique among the known 6-oxopurine PRTases in that it exhibits a marked preference for hypoxanthine as substrate over both xanthine and guanine. The structures suggest that its substrate specificity is due to the modes of binding of the bases. In E. coli HPRT, the carbonyl oxygen of Asp 163 would likely form a hydrogen bond with the 2-exocyclic nitrogen of guanine (in the HPRT-guanine-PRib-PP-Mg2+ complex). However, hypoxanthine does not have a 2-exocyclic atom and the HPRT-IMP structure suggests that hypoxanthine is likely to occupy a different position in the purine-binding pocket.
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
Backhousia citriodora is typical of the many commercially valuable woody Australian Myrtaceae species that are recalcitrant in forming adventitious roots from cuttings after maturation. A series of experiments were conducted to identify an endogenous rooting inhibitor in line with established criteria. Endogenous levels of citral were correlated with the rooting capacities of juvenile versus mature, and easy- versus difficult-to-root genotypes of B. citriodora, in both winter and summer. The biological activity of citral was confirmed in bioassays on mung beans and easy-to-root B. citriodora seedlings. Evidence of a common mechanism of root inhibition with other species in the Myrtaceae and the role of action of citral are discussed.
Resumo:
Co-crystallization of sucrose from a highly concentrated sucrose syrup (less than or equal to 7% moisture, w/w) at 131 degreesC with 0, 5, 10, 15, and 20% of fructose, glucose, or a mixture of fructose and glucose was investigated. The crystallization of sucrose was delayed in presence of these lower molecular weight sugars. The DSC melting endotherm of cocrystallized samples exhibited a decrease in crystalline sucrose in the sample as a function of increased level of glucose and fructose. The mechanical strength of co-crystallized granules was found to be related to the moisture content and the amount of glucose or fructose content in the sample. The samples containing 10, 15, and 20% glucose in co-crystallized product demonstrated crystallization of glucose in its monohydrate form during 1 mo of storage.
Resumo:
Phenylethanolamine N-methyltransferase, PNMT, utilizes the methylating cofactor S-adenosyl-L-methionine to catalyse the synthesis of adrenaline. Human PNMT has been crystallized in complex with an inhibitor and the cofactor product S-adenosyl-L-homocysteine using the hanging-drop technique with PEG 6000 and lithium chloride as precipitant. A critical requirement for crystallization was a high enzyme concentration (>90 mg ml(-1)) and cryocrystallography was used for high-quality data measurement. Diffraction data measured from a cryocooled crystal extend to a resolution of 2.3 Angstrom. Cryocooled crystals belong to space group P4(3)2(1)2 and have unit-cell parameters a = b = 94.3, c = 187.7 Angstrom.