954 resultados para Human factors engineering.
Resumo:
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.
Resumo:
The detailed in-vivo characterization of subcortical brain structures is essential not only to understand the basic organizational principles of the healthy brain but also for the study of the involvement of the basal ganglia in brain disorders. The particular tissue properties of basal ganglia - most importantly their high iron content, strongly affect the contrast of magnetic resonance imaging (MRI) images, hampering the accurate automated assessment of these regions. This technical challenge explains the substantial controversy in the literature about the magnitude, directionality and neurobiological interpretation of basal ganglia structural changes estimated from MRI and computational anatomy techniques. My scientific project addresses the pertinent need for accurate automated delineation of basal ganglia using two complementary strategies: ? Empirical testing of the utility of novel imaging protocols to provide superior contrast in the basal ganglia and to quantify brain tissue properties; ? Improvement of the algorithms for the reliable automated detection of basal ganglia and thalamus Previous research demonstrated that MRI protocols based on magnetization transfer (MT) saturation maps provide optimal grey-white matter contrast in subcortical structures compared with the widely used Tl-weighted (Tlw) images (Helms et al., 2009). Under the assumption of a direct impact of brain tissue properties on MR contrast my first study addressed the question of the mechanisms underlying the regional specificities effect of the basal ganglia. I used established whole-brain voxel-based methods to test for grey matter volume differences between MT and Tlw imaging protocols with an emphasis on subcortical structures. I applied a regression model to explain the observed grey matter differences from the regionally specific impact of brain tissue properties on the MR contrast. The results of my first project prompted further methodological developments to create adequate priors for the basal ganglia and thalamus allowing optimal automated delineation of these structures in a probabilistic tissue classification framework. I established a standardized workflow for manual labelling of the basal ganglia, thalamus and cerebellar dentate to create new tissue probability maps from quantitative MR maps featuring optimal grey-white matter contrast in subcortical areas. The validation step of the new tissue priors included a comparison of the classification performance with the existing probability maps. In my third project I continued investigating the factors impacting automated brain tissue classification that result in interpretational shortcomings when using Tlw MRI data in the framework of computational anatomy. While the intensity in Tlw images is predominantly
Resumo:
Human altruism shaped our evolutionary history and pervades social and political life. There are, however, enormous individual differences in altruism. Some people are almost completely selfish, while others display strong altruism, and the factors behind this heterogeneity are only poorly understood. We examine the neuroanatomical basis of these differences with voxel-based morphometry and show that gray matter (GM) volume in the right temporoparietal junction (TPJ) is strongly associated with both individuals' altruism and the individual-specific conditions under which this brain region is recruited during altruistic decision making. Thus, individual differences in GM volume in TPJ not only translate into individual differences in the general propensity to behave altruistically, but they also create a link between brain structure and brain function by indicating the conditions under which individuals are likely to recruit this region when they face a conflict between altruistic and selfish acts.
Resumo:
The paper analyses the link between human capital and regional economic growth in the European Union. Using different indicat The importance of effective and efficient mobility in large cities is becoming essential for planners and citizens due to its impact in terms of social, economic and geographic development. The aim of this research is to determine factors explaining urban transport systems by estimating aggregate supply and demand equations for 45 large European cities. Supply and Demand equations are separately and jointly determined using OLS and SUR estimation models. On one hand, our findings suggest the importance of economic variables on the supply of public transport. On the other, we highlight the role of those factors influencing the generalized cost of transport as main drivers of demand for public transit. Additionally, regional variables are introduced to capture institutional heterogeneity in this service, and we find that regional patterns are powerful explanatory determinants of urban transportation systems in Europe.
Resumo:
Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are structurally and functionally similar glycoprotein hormones acting through the same luteinizing hormone chorionic gonadotropin receptor (LHCGR). The functions of LH in reproduction and hCG in pregnancy are well known. Recently, the expression of LHCGR has been found in many nongonadal tissues and cancers, and this has raised the question of whether LH/hCG could affect the function or tumorigenesis of these nongonadal tissues. We have also previously generated an hCG expressing mouse model presenting nongonadal phenotypes. Using this model it is possible to improve our understanding of nongonadal action of highly elevated LH/hCG. In the current study, we analyzed the effect of moderately and highly elevated hCG levels on male reproductive development and function. The main finding was the appearance of fetal Leydig cell (FLC) adenomas in prepubertal males. However, the development and differentiation of FLCs were not significantly affected. We also show that the function of hCG is different in FLCs and in adult Leydig cells (ALC), because in the latter cells hCG was not able to induce tumorigenesis. In FLCs, LHCGR is not desensitized or downregulated upon ligand binding. In this study, we found that the testicular expression of two G protein-coupled receptor kinases responsible for receptor desensitization or downregulation is increased in adult testis. Results suggest that the lack of LHCGR desensitization or downregulation in FLCs protect testosterone (Te) synthesis, but also predispose FLCs for LH/hCG induced adenomas. However, all the hCG induced nongonadal changes observed in male mice were possible to explain by the elevated Te level found in these males. Our findings indicate that the direct nongonadal effects of elevated LH/hCG in males are not pathophysiologically significant. In female mice, we showed that an elevated hCG level was able to induce gonadal tumorigenesis. hCG also induced the formation of pituitary adenomas (PA), but the mechanism was indirect. Furthermore, we found two new potential risk factors and a novel hormonally induced mechanism for PAs. Increased progesterone (P) levels in the presence of physiological estradiol (E2) levels induced the formation of PAs in female mice. E2 and P induced the expression and nuclear localization of a known cell-cycle regulator, cyclin D1. A calorie restricted diet was also able to prevent the formation of PAs, suggesting that obesity is able to promote the formation of PAs. Hormone replacement therapy after gonadectomy and hormone antagonist therapy showed that the nongonadal phenotypes observed in hCG expressing female mice were due to ovarian hyperstimulation. A slight adrenal phenotype was evident even after gonadectomy in hCG expressing females, but E2 and P replacement was able to induce a similar phenotype in WT females without elevated LH/hCG action. In conclusion, we showed that the direct effects of elevated hCG/LH action are limited only to the gonads of both sexes. The nongonadal phenotypes observed in hCG expressing mice were due to the indirect, gonadal hormone mediated effects of elevated hCG. Therefore, the gonads are the only physiologically significant direct targets of LHCGR signalling.
Resumo:
This study is aimed to clarify the association between MDMA cumulative use and cognitive dysfunction, and the potential role of candidate genetic polymorphisms in explaining individual differences in the cognitive effects of MDMA. Gene polymorphisms related to reduced serotonin function, poor competency of executive control and memory consolidation systems, and high enzymatic activity linked to bioactivation of MDMA to neurotoxic metabolites may contribute to explain variations in the cognitive impact of MDMA across regular users of this drug. Sixty ecstasy polydrug users, 110 cannabis users and 93 non-drug users were assessed using cognitive measures of Verbal Memory (California Verbal Learning Test, CVLT), Visual Memory (Rey-Osterrieth Complex Figure Test, ROCFT), Semantic Fluency, and Perceptual Attention (Symbol Digit Modalities Test, SDMT). Participants were also genotyped for polymorphisms within the 5HTT, 5HTR2A, COMT, CYP2D6, BDNF, and GRIN2B genes using polymerase chain reaction and TaqMan polymerase assays. Lifetime cumulative MDMA use was significantly associated with poorer performance on visuospatial memory and perceptual attention. Heavy MDMA users (>100 tablets lifetime use) interacted with candidate gene polymorphisms in explaining individual differences in cognitive performance between MDMA users and controls. MDMA users carrying COMT val/val and SERT s/s had poorer performance than paired controls on visuospatial attention and memory, and MDMA users with CYP2D6 ultra-rapid metabolizers performed worse than controls on semantic fluency. Both MDMA lifetime use and gene-related individual differences influence cognitive dysfunction in ecstasy users.
Resumo:
Congestion costs are emerging as one of the most important challenges faced by metropolitan planners and transport authorities in first world economies. In US these costs were as high as 78 million dollars in 2005 and are growing due to fast increases in travel delays. In order to solve the current and severe levels of congestion the US department of transportation have recently started a program to initiate congestion pricing in five metropolitan areas. In this context it is important to determine those factors helping its implementation and success, but also the problems or difficulties associated with charging projects. In this article we analyze worldwide experiences with urban road charging in order to extract interesting and helpful lessons for policy makers engaged in congestion pricing projects and for those interested in the introduction of traffic management tools to regulate the entrance to big cities.
Resumo:
Empirical evidence is compelling that large firms are more productive than small firms. The hypothesis in this paper is that the productivity differences between small and large firms are associated with two of the main determinants of a firm’s performance: the human and technological capital that firms incorporate. We suggest that the contribution of these factors in explaining the productivity-size gap might not only be due to the fact that large firms make a more extensive use of them, but also because large firms obtain higher returns from their investment in human and technological capital. The evidence we obtain for a comprehensive sample of Spanish manufacturing firms (1990-2002) supports this hypothesis, which has important implications for the effectiveness of policies designed to improve productivity in SMEs by stimulating innovation and the use of more skilled workers.
Resumo:
In this paper, we examine the relationship between the stock of human capital and productivity in the Spanish regions (NUTS III), and assess whether the transmission channel involves external economies. The empirical evidence points to a positive relationship between the two variables, although it cannot be explained in terms of the impact of exogenous local human capital external economies, but rather in terms of other demand factors.
Resumo:
The emergence and pandemic spread of a new strain of influenza A (H1N1) virus in 2009 resulted in a serious alarm in clinical and public health services all over the world. One distinguishing feature of this new influenza pandemic was the different profile of hospitalized patients compared to those from traditional seasonal influenza infections. Our goal was to analyze sociodemographic and clinical factors associated to hospitalization following infection by influenza A(H1N1) virus. We report the results of a Spanish nationwide study with laboratory confirmed infection by the new pandemic virus in a case-control design based on hospitalized patients. The main risk factors for hospitalization of influenza A (H1N1) 2009 were determined to be obesity (BMI≥40, with an odds-ratio [OR] 14.27), hematological neoplasia (OR 10.71), chronic heart disease, COPD (OR 5.16) and neurological disease, among the clinical conditions, whereas low education level and some ethnic backgrounds (Gypsies and Amerinds) were the sociodemographic variables found associated to hospitalization. The presence of any clinical condition of moderate risk almost triples the risk of hospitalization (OR 2.88) and high risk conditions raise this value markedly (OR 6.43). The risk of hospitalization increased proportionally when for two (OR 2.08) or for three or more (OR 4.86) risk factors were simultaneously present in the same patient. These findings should be considered when a new influenza virus appears in the human population
Resumo:
Positron emission tomography (PET) studies on healthy individuals have revealed a marked interindividual variability in striatal dopamine D2 receptor density that can be partly accounted for by genetic factors. The examination of the extrastriatal lowdensity D2 receptor populations has been impeded by the lack of suitable tracers. However, the quantification of these D2 receptor populations is now feasible with recently developed PET radioligands. The objective of this thesis was to study brain neurobiological correlates of common functional genetic variants residing in candidate genes relevant for D2 receptor functioning. For this purpose, healthy subjects were studied with PET imaging using [11C]raclopride and [11C]FLB457 as radioligands. The candidate genes examined in this work were the human D2 receptor gene (DRD2) and the catechol-Omethyltransferase gene (COMT). The region-specific genotypic influences were explored by comparing D2 receptor binding properties in the striatum, the cortex and the thalamus. As an additional study objective, the relationship between cortical D2 receptor density and a cognitive phenotype i.e. verbal memory and learning was assessed. The main finding of this study was that DRD2 C957T genotype altered markedly D2 receptor density in the cortex and the thalamus whereas in the striatum the C957T genotype affected D2 receptor affinity, but not density. Furthermore, the A1 allele of the DRD2-related TaqIA polymorphism showed increased cortical and thalamic D2 receptor density, but had the opposite effect on striatal D2 receptor density. The DRD2 –141C Ins/Del or the COMT Val158Met genotypes did not change D2 receptor binding properties. Finally, unlike previously reported, cortical D2 receptor density did not show any significant correlation with verbal memory function. The results of this study suggest that the C957T and the TaqIA genotypes have region-specific neurobiological correlates in brain dopamine D2 receptor availability in vivo. The biological mechanisms underlying these findings are unclear, but they may be related to the region-specific regulation of dopamine neurotranssion, gene/receptor expression and epigenesis. These findings contribute to the understanding of the genetic regulation of dopamine and D2 receptor-related brain functions in vivo in man. In addition, the results provide potentially useful endophenotypes for genetic research on psychiatric and neurological disorders.
Resumo:
A new analytical approach was developed involving cloud point extraction (CPE) and spectrofluorimetric determination of triamterene (TM) in biological fluids. A urine or plasma sample was prepared and adjusted to pH 7, then TM was quickly extracted using CPE, using 0.05% (w/v) of Triton X-114 as the extractant. The main factors that affected the extraction efficiency (the pH of the sample, the Triton X-114 concentration, the addition of salt, the extraction time and temperature, and the centrifugation time and speed) were studied and optimized. The method gave calibration curves for TM with good linearities and correlation coefficients (r) higher than 0.99. The method showed good precision and accuracy, with intra- and inter-assay precisions of less than 8.50% at all concentrations. Standard addition recovery tests were carried out, and the recoveries ranged from 94.7% to 114%. The limits of detection and quantification were 3.90 and 11.7 µg L-1, respectively, for urine and 5.80 and 18.0 µg L-1, respectively, for plasma. The newly developed, environmentally friendly method was successfully used to extract and determine TM in human urine samples.
Resumo:
Endometriosis is a common hormone-dependent gynecological disease leading to severe menstrual and/or chronic pelvic pain with or without subfertility. The disease is defined by the presence of endometrium-like tissue outside the uterine cavity, primarily on the pelvic peritoneum, ovaries and infiltrating organs of the peritoneal cavity. The current tools for diagnosis and treatment of endometriosis need to be improved to ensure reliable diagnosis and effective treatment. In addition, endometriosis is associated with increased risk of ovarian cancer and, therefore, the differential diagnosis between the benign and malignant ovarian cysts is of importance. The long-term objective of the present study was to support the discovery of novel tools for diagnosis and treatment of endometriosis. This was approached by exploiting genome-wide expression analysis of endometriosis specimens. A novel expression profiling -based classification of endometriosis indicated specific subgroups of lesions partially consistent with the clinical appearance, but partially according to unknown factors. The peritoneum of women with endometriosis appeared to be altered in comparison to that of healthy control subjects, suggesting a novel aspect on the pathogenesis of the disease. The evaluation of action and metabolism of sex hormones in endometrium and endometriosis tissue indicated a novel role of androgens in regulation of the tissues. In addition, an enzyme involved in androgen and neurosteroid metabolism, hydroxysteroid (17beta) dehydrogenase 6, was found to be highly up-regulated in endometriosis tissue as compared to healthy endometrium. The enzyme may have a role in the pathogenesis of endometriosis or in the endometriosis associated pain generation. Finally, a new diagnostic biomarker, HE4, was discovered distinguishing patients with ovarian endometriotic cysts from those with malignant ovarian cancer. The information acquired in this study enables deeper understanding of endometriosis and facilitates the development of improved diagnostic tools and more specific treatments of the disease
Resumo:
Selective development of human T helper (Th) cells into functionally distinct Th1 and Th2 subtypes plays an essential role in the host immune response towards pathogens. However, abnormal function or differentiation of these cells can lead to development of various autoimmune diseases as well as asthma and allergy. Therefore, identification of key factors and the molecular mechanisms mediating Th1 and Th2 cell differentiation is important for understanding the molecular mechanisms of these diseases. The goal of this study was to identify novel factors involved in the regulation of Th1 and Th2 differentiation processes. A new method was optimized for enrichment of transiently transfected resting human primary T lymphocytes, that allowed the study of the influence of genes of interest in human Th1/Th2 cell differentiation and other primary Th cell functions. Functional characterization of PRELI, a novel activation-induced protein in human Th cells, identified it as a mitochondrial protein involved in the regulation of Th cell differentiation and apoptosis. By influencing the intracellular redox state, PRELI induces mitochondrial apoptosis pathway and downregulates STAT6 and Th2 differentiation. The data suggested that Calpain, an oxidative stress induced cysteine protease, is involved as a mediator in PRELI-induced downregulation of STAT6. PIM serine/threonine-specific kinases were identified as new regulators of human Th1 cell differentiation. PIM1 and PIM2 kinases were shown to be preferentially expressed in Th1 cells as compared to Th2 cells. RNA interference studies showed that PIM kinases enhance the production of IFN, the hallmark cytokine produced by Th1 cells. They also induce the expression of the key Th1-driving factor T-bet and the IL-12 signaling pathway during early phases of Th1 cell differentiation. Taken together, new regulators of human T helper cell differentiation were identified in this study, which provides new insights into the signaling mechanisms controlling the selective activation of human Th cell subsets.
Resumo:
Print quality and the printability of paper are very important attributes when modern printing applications are considered. In prints containing images, high print quality is a basic requirement. Tone unevenness and non uniform glossiness of printed products are the most disturbing factors influencing overall print quality. These defects are caused by non ideal interactions of paper, ink and printing devices in high speed printing processes. Since print quality is a perceptive characteristic, the measurement of unevenness according to human vision is a significant problem. In this thesis, the mottling phenomenon is studied. Mottling is a printing defect characterized by a spotty, non uniform appearance in solid printed areas. Print mottle is usually the result of uneven ink lay down or non uniform ink absorption across the paper surface, especially visible in mid tone imagery or areas of uniform color, such as solids and continuous tone screen builds. By using existing knowledge on visual perception and known methods to quantify print tone variation, a new method for print unevenness evaluation is introduced. The method is compared to previous results in the field and is supported by psychometric experiments. Pilot studies are made to estimate the effect of optical paper characteristics prior to printing, on the unevenness of the printed area after printing. Instrumental methods for print unevenness evaluation have been compared and the results of the comparison indicate that the proposed method produces better results in terms of visual evaluation correspondence. The method has been successfully implemented as ail industrial application and is proved to be a reliable substitute to visual expertise.