968 resultados para Holly, Carol
Resumo:
The role of ethylene in regulating organ senescence in Arabidopsis has been investigated by studying the development of mutants that have an attenu- ated capacity to perceive the gas. The onset of leaf senescence and floral organ abscission was delayed in the ethylene-insensitive mutant etr1. The photosynthetic life span of rosette leaves was similarly extended in the gain- of-function mutant ers2, and this mutant also exhibited a delay in the timing of pod dehiscence primarily as a con- sequence of an extension in the final stages of senescence. A detailed analysis of yield revealed that whilst thousand grain weight was increased, by as much as 20 %, in etr1, ein4, and the loss-of-function mutant etr2, only the latter showed a significant increase in total weight of seeds produced per plant. The other studied mutants exhibited a reduction in total seed yield of almost 40 %. These observations are discussed in the context of the possible role of ethylene in regulating organ senescence and their significance in the breeding of crop plants with enhanced phenotypic characteristics.
Resumo:
Rocket species have been shown to have very high concentrations of glucosinolates and flavonols, which have numerous positive health benefits with regular consumption. In this review we highlight how breeders and processors of rocket species can utilize genomic and phytochemical research to improve varieties and enhance the nutritive benefits to consumers. Plant breeders are increasingly looking to new technologies such as HPLC, UPLC, LC-MS and GC-MS to screen populations for their phytochemical content to inform plant selections. Here we collate the research that has been conducted to-date in rocket, and summarise all glucosinolate and flavonol compounds identified in the species. We emphasize the importance of the broad screening of populations for phytochemicals and myrosinase degradation products, as well as unique traits that may be found in underutilized gene bank resources. We also stress that collaboration with industrial partners is becoming essential for long-term plant breeding goals through research.
Resumo:
The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.
Resumo:
Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to ‘pre-condition’ them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at two gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that three generations of high vpd-grown plants were better able to withstand periodic drought stress over two generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.
Resumo:
Wernicke’s aphasia occurs following a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used fMRI to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered following damage to the classical comprehension regions. Twelve participants with Wernicke’s aphasia and twelve control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and ROI analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an “over-activation” in comparison to control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results concord with models which indicate that the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Resumo:
Background: Auditory discrimination is significantly impaired in Wernicke’s aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Methods: Behavioural auditory discrimination thresholds of CVC syllables and pure tones were measured in WA (n=7) and control (n=7) participants. Threshold results were used to develop multiple-deviant mismatch negativity (MMN) oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). Results: MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. Conclusions: The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical processing and the construction of invariant auditory objects. Correlation results suggest that people with chronic WA may rely on an inefficient, noisy right hemisphere auditory stream when attempting to process speech stimuli.
Resumo:
Liquid Chromatography Mass Spectrometry (LC-MS) was used to obtain glucosinolate and flavonol content for 35 rocket accessions and commercial varieties. 13 glucosinolates and 11 flavonol compounds were identified. Semi-quantitative methods were used to estimate concentrations of both groups of compounds. Minor glucosinolate composition was found to be different between accessions; concentrations varied significantly. Flavonols showed differentiation between genera, with Diplotaxis accumulating quercetin glucosides and Eruca accumulating kaempferol glucosides. Several compounds were detected in each genus that have only previously been reported in the other. We highlight how knowledge of phytochemical content and concentration can be used to breed new, nutritionally superior varieties. We also demonstrate the effects of controlled environment conditions on the accumulations of glucosinolates and flavonols and explore the reasons for differences with previous studies. We stress the importance of consistent experimental design between research groups to effectively compare and contrast results.
Resumo:
This book looks at how auto-ID has evolved and how it can be used in the construction industry and across projects from the perspective of all the stakeholders, from owners to design consultants, contractors and the supply chain. It could help to improve efficiency, reduce costs, ensure quality, protect the environment, and enhance safety.
Resumo:
A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The DYMECS project (Dynamical and Microphysical Evolution of Convective Storms) is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, we have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. We have related these structures to storm life-cycles derived by tracking features in the rainfall from the UK radar network, and compared them statistically to storm structures in the Met Office model, which we ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. We also evaluated the scale and intensity of convective updrafts using a new radar technique. We find that the horizontal size of simulated convective storms and the updrafts within them is much too large at 1.5-km resolution, such that the convective mass flux of individual updrafts can be too large by an order of magnitude. The scale of precipitation cores and updrafts decreases steadily with decreasing grid lengths, as does the typical storm lifetime. The 200-m grid-length simulation with standard mixing length performs best over all diagnostics, although a greater mixing length improves the representation of deep convective storms.
Resumo:
Barley can be classified into three major agronomic types, based on its seasonal growth habit (SGH): spring, winter and alternative. Winter varieties require exposure to vernalization to promote subsequent flowering and are autumn-sown. Spring varieties proceed to flowering in the absence of vernalization and are sown in the spring. The ‘alternative’ (also known as ‘facultative’) SGH is only loosely defined and can be sown in autumn or spring. Here, we investigate the molecular genetic basis of alternative barley. Analysis of the major barley vernalization (VRN-H1, VRN-H2) and photoperiod (PPD-H1, PPD-H2) response genes in a collection of 386 varieties found alternative SGH to be characterized by specific allelic combinations. Spring varieties possessed spring loci at one or both of the vernalization response loci, combined with long-day non-responsive ppd-H1 alleles and wild-type alleles at the short-day photoperiod response locus, PPD-H2. Winter varieties possessed winter alleles at both vernalization loci, in combination with the mutant ppd-H2 allele conferring delayed flowering under short-day photoperiods. In contrast, all alternative varieties investigated possessed a single spring allele (either at VRN-H1 or at VRN-H2) combined with mutant ppd-H2 alleles. This allelic combination is found only in alternative types and is diagnostic for alternative SGH in the collection studied. Analysis of flowering time under controlled environment found alternative varieties flowered later than spring control lines, with the difference most pronounced under short-day photoperiods. This work provides genetic characterization of the alternative SGH phenotype, allowing precise manipulation of SGH and flowering time within breeding programmes, and provides the molecular tools for classification of all three SGH categories within national variety registration processes.
Resumo:
An important step in breeding for nutritionally enhanced varieties is determining the effects of the post-harvest supply chain on phytochemicals and the changes in VOCs produced over time. TD- GC-TOF-MS was used and a technique for the extraction of VOCs from the headspace using portable tubes is described. Forty-two compounds were detected; 39 were identified by comparison to NIST libraries. Thirty-five compounds had not been previously reported in Eruca sativa. Seven accessions were assessed for changes in headspace VOCs over 7 days. Relative amounts of VOCs across 3 time points were significantly different - isothiocyanate-containing molecules being abundant on 'Day 0'. Each accession showed differences in proportions/types of volatiles produced on each day. PCA revealed a separation of VOC profiles according to the day of sampling. Changes in VOC profiles over time could provide a tool for assessment of shelf-life.
Resumo:
Senescence represents the final developmental act of the leaf, during which the leaf cell is dismantled in a coordinated manner to remobilize nutrients and to secure reproductive success. The process of senescence provides the plant with phenotypic plasticity to help it adapt to adverse environmental conditions. Here, we provide a comprehensive overview of the factors and mechanisms that control the onset of senescence. We explain how the competence to senesce is established during leaf development, as depicted by the senescence window model. We also discuss the mechanisms by which phytohormones and environmental stresses control senescence, as well as the impact of source-sink relationships on plant yield and stress tolerance. In addition, we discuss the role of senescence as a strategy for stress adaptation and how crop production and food quality could benefit from engineering or breeding crops with altered onset of senescence.
Resumo:
We investigated the time course of anaphor resolution in children and whether this is modulated by individual differences in working memory and reading skill. The eye movements of 30 children (10-11 years) were monitored as they read short paragraphs in which (i) the semantic typicality of an antecedent and (ii) its distance in relation to an anaphor, were orthogonally manipulated. Children showed effects of distance and typicality on the anaphor itself, and also on the word to the right of the anaphor, suggesting that anaphoric processing begins immediately but continues after the eyes have left the anaphor. Furthermore, children showed no evidence of resolving anaphors in the most difficult condition (distant atypical antecedent), suggesting that anaphoric processing that is demanding may not occur online in children of this age. Finally, working memory capacity and reading comprehension skill affect the magnitude and time course of typicality and distance effects during anaphoric processing.
Resumo:
We know that from mid-childhood onwards most new words are learned implicitly via reading; however, most word learning studies have taught novel items explicitly. We examined incidental word learning during reading by focusing on the well-documented finding that words which are acquired early in life are processed more quickly than those acquired later. Novel words were embedded in meaningful sentences and were presented to adult readers early (day 1) or later (day 2) during a five-day exposure phase. At test adults read the novel words in semantically neutral sentences. Participants’ eye movements were monitored throughout exposure and test. Adults also completed a surprise memory test in which they had to match each novel word with its definition. Results showed a decrease in reading times for all novel words over exposure, and significantly longer total reading times at test for early than late novel words. Early-presented novel words were also remembered better in the offline test. Our results show that order of presentation influences processing time early in the course of acquiring a new word, consistent with partial and incremental growth in knowledge occurring as a function of an individual’s experience with each word.
Resumo:
We monitored 8- and 10-year-old children’s eye movements as they read sentences containing a temporary syntactic ambiguity to obtain a detailed record of their online processing. Children showed the classic garden-path effect in online processing. Their reading was disrupted following disambiguation, relative to control sentences containing a comma to block the ambiguity, although the disruption occurred somewhat later than would be expected for mature readers. We also asked children questions to probe their comprehension of the syntactic ambiguity offline. They made more errors following ambiguous sentences than following control sentences, demonstrating that the initial incorrect parse of the garden-path sentence influenced offline comprehension. These findings are consistent with “good enough” processing effects seen in adults. While faster reading times and more regressions were generally associated with better comprehension, spending longer reading the question predicted comprehension success specifically in the ambiguous condition. This suggests that reading the question prompted children to reconstruct the sentence and engage in some form of processing, which in turn increased the likelihood of comprehension success. Older children were more sensitive to the syntactic function of commas, and, overall, they were faster and more accurate than younger children.