989 resultados para Histone Deacetylase Inhibition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to examine the impact of the xanthine oxidase (XO) inhibitor allopurinol on the skeletal muscle activation of cell signaling kinases' and adaptations to mitochondrial proteins and antioxidant enzymes following acute endurance exercise and endurance training. Male Sprague-Dawley rats performed either acute exercise (60 min of treadmill running, 27 m/min, 5% incline) or 6 wk of endurance training (5 days/wk) while receiving allopurinol or vehicle. Allopurinol treatment reduced XO activity to 5% of the basal levels (P < 0.05), with skeletal muscle uric acid levels being almost undetectable. Following acute exercise, skeletal muscle oxidized glutathione (GSSG) significantly increased in allopurinol- and vehicle-treated groups despite XO activity and uric acid levels being unaltered by acute exercise (P < 0.05). This suggests that the source of ROS was not from XO. Surprisingly, muscle GSSG levels were significantly increased following allopurinol treatment. Following acute exercise, allopurinol treatment prevented the increase in p38 MAPK and ERK phosphorylation and attenuated the increase in mitochondrial transcription factor A (mtTFA) mRNA (P < 0.05) but had no effect on the increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor-2, GLUT4, or superoxide dismutase mRNA. Allopurinol also had no impact on the endurance training-induced increases in PGC-1α, mtTFA, and mitochondrial proteins including cytochrome c, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase. In conclusion, although allopurinol inhibits cell signaling pathways in response to acute exercise, the inhibitory effects of allopurinol appear unrelated to exercise-induced ROS production by XO. Allopurinol also has little effect on increases in mitochondrial proteins following endurance training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical parameters including maximum anodic current density, total anodic current density, the number of anodic sites and the localised corrosion intensity index have been extracted from galvanic current distribution maps that were acquired using an electrochemically integrated multielectrode array, namely, the wire beam electrode. Experiments have been carried out to demonstrate the application of these new electrochemical parameters for characterising localised corrosion inhibition of metals. A typical corrosion inhibitor, potassium dichromate, was found to affect localised corrosion processes in various ways, for instance in sodium chloride solutions, it was found to inhibit localised corrosion of aluminium alloy AA 2024-T3 by suppressing galvanic corrosion activities occurring over the alloy surface, whereas it was found to control localised corrosion of AA 1100 by creating a large number of minor anodes distributing randomly over the metal surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer's disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
Silver nanoparticles (AgNPs) have attracted much attention as antimicrobial agents and have demonstrated efficient inhibitory activity against various viruses, including human immunodeficiency virus, hepatitis B virus, and Tacaribe virus. In this study, we investigated if AgNPs could have antiviral and preventive effects in A/Human/Hubei/3/2005 (H3N2) influenza virus infection. Madin-Darby canine kidney cells infected with AgNP-treated H3N2 influenza virus showed better viability (P,0.05 versus influenza virus control) and no obvious cytopathic effects compared with an influenza virus control group and a group treated with the solvent used for preparation of the AgNPs. Hemagglutination assay indicated that AgNPs could significantly inhibit growth of the influenza virus in Madin-Darby canine kidney cells (P,0.01 versus the influenza virus control). AgNPs significantly reduced cell apoptosis induced by H3N2 influenza virus at three different treatment pathways (P,0.05 versus influenza virus control). H3N2 influenza viruses treated with AgNPs were analyzed by transmission electron microscopy and found to interact with each other, resulting in destruction of morphologic viral structures in a time-dependent manner in a time range of 30 minutes to 2 hours. In addition, intranasal AgNP administration in mice significantly enhanced survival after infection with the H3N2 influenza virus. Mice treated with AgNPs showed lower lung viral titer levels and minor pathologic lesions in lung tissue, and had a marked survival benefit during secondary intranasal passage in vivo. These results provide evidence that AgNPs have beneficial effects in preventing H3N2 influenza virus infection both in vitro and in vivo, and demonstrate that AgNPs can be used as potential therapeutics for inhibiting outbreaks of influenza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/BM40/Osteonectin is a matricellular protein with multiple effects on cell behaviour. In vitro, its major known functions are anti-adhesive and anti-proliferative, and it is associated with tissue remodelling and cancer in vivo. SPARC is overexpressed in many cancers, including breast cancer, and the effects of SPARC seem to be cell type-specific. To study the effects of SPARC on breast cancer, we transfected SPARC into the MDA-MB-231 BAG, human breast cancer cell line using the Tet-On inducible system. By western analysis, we found low background levels in the MDA-MB-231 BAG and clone X parental cells, and prominent induction of SPARC protein expression after doxycycline treatment in SPARC transfected clones X5, X21, X24 and X75. Induction of SPARC expression did not affect cell morphology or adhesiveness to collagens type I and IV, but it slowed the rate of proliferation in adherent cultures. Cell cycle analysis showed that SPARC slowed the progression to S phase. Doxycycline induction of SPARC also slowed the rate of monolayer wound closure in the cultured wound healing assay. Thymidine inhibition of proliferation abrogated this effect, confirming that it was due to anti-proliferation rather than inhibition of migration. Consistent with this, we were unable to detect any differences in migration and Matrigel outgrowth analysis of doxycycline-stimulated cells. We conclude that SPARC is inhibitory to human breast cancer cell proliferation, and does not stimulate migration, in contrast to its stimulatory effects reported for melanoma (proliferation and migration) and glioma (migration) cells. Similar growth repression by SPARC has been reported for ovarian cancer cells, and this may be a common feature among carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of PET to image functional changes in tumors is increasingly being used to evaluate response and predict clinical benefit to conventional and novel cancer therapies. Although the use of (18)F-FDG PET is well established, 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET has potential advantages as a more specific marker of cellular proliferation. c-MET signaling is frequently dysregulated in cancer and is therefore an attractive therapeutic target. Crizotinib (PF-2341066) is a novel adenosine triphosphate-competitive c-MET kinase inhibitor with antitumor activity in a range of tumor models. The aim of this study was to investigate the utility of PET of glucose metabolism and cell proliferation to monitor tumor response to crizotinib in 2 cell lines with aberrant c-MET signaling.