920 resultados para Higher Order Tangent Bundles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected—and undetected—target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of the M26 meiotic recombination hot spot of Schizosaccharomyces pombe depends on the presence of the heptamer 5′-ATGACGT-3′. Transplacement of DNA fragments containing the ade6-M26 gene to other chromosomal loci has previously demonstrated that the heptamer functions in some, but not all, transplacements, suggesting that hot spot activity depends on chromosomal context. In this study, hot spot activity was tested in the absence of gross DNA changes by using site-directed mutagenesis to create the heptamer sequence at novel locations in the genome. When created by mutagenesis of 1–4 bp in the ade6 and ura4 genes, the heptamer was active as a recombination hot spot, in an orientation-independent manner, at all locations tested. Thus, the heptamer sequence can create an active hot spot in other chromosomal contexts, provided that the gross chromosomal structure is not altered; this result is consistent with the hypothesis that a specific higher-order chromatin structure is required for M26 hot spot activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influenza A virus M2 integral membrane protein is an ion channel that permits protons to enter virus particles during uncoating of virions in endosomes and also modulates the pH of the trans-Golgi network in virus-infected cells. The M2 protein is a homo-oligomer of 97 residues, and analysis by chemical cross-linking and SDS/PAGE indicates M2 forms a tetramer. However, a higher order molecular form is sometimes observed and, thus, it is necessary to determine the active form of the molecule. This was done by studying the currents of oocytes that expressed mixtures of the wild-type M2 protein (epitope tagged) and the mutant protein M2-V27S, which is resistant to the inhibitor amantadine. The composition of mixed oligomers of the two proteins expressed at the plasma membrane of individual oocytes was quantified after antibody capture of the cell surface expressed molecules and it was found that the subunits mixed freely. When the ratio of wild-type to mutant protein subunits was 0.85:0.15, the amantadine sensitivity was reduced to 50% and for a ratio of 0.71:0.29 to 20%. These results are consistent with the amantadine-resistant mutant being dominant and the oligomeric state being a tetramer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant percentage of the gene clusters that contain the human genes for U1 small nuclear RNA (snRNA) or for U2 snRNA have been found associated with small nuclear domains, known as coiled bodies. We show here, by immunofluorescent labeling of human cells, that coiled bodies are enriched in factors required for the transcription of these snRNA genes. The 45-kDa γ-subunit of the transcription factor, proximal element sequence-binding transcription factor (PTF), which is specific for the snRNA genes, was found in high concentrations in coiled bodies, along with the general transcription factor TATA-box binding protein and a subset of RNA polymerase II. We show that the transcription factors and RNA polymerase II are concentrated in irregularly shaped domains that not only overlap with coiled bodies but also extend to their immediate surroundings. Fluorescent in situ hybridization showed that these domains can overlap with U2 snRNA genes adjacent to coiled bodies. In addition, we found the domains to contain newly synthesized RNA, visualized by 5-bromo-uridine triphosphate labeling. Our data suggest that coiled bodies are involved in the expression of snRNA genes, which leads us to propose the model that coiled bodies are associated with snRNA genes to facilitate and regulate their transcription. These findings point to a general principle of higher order organization of gene expression in the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative model of interphase chromosome higher-order structure is presented based on the isochore model of the genome and results obtained in the field of copolymer research. G1 chromosomes are approximated in the model as multiblock copolymers of the 30-nm chromatin fiber, which alternately contain two types of 0.5- to 1-Mbp blocks (R and G minibands) differing in GC content and DNA-bound proteins. A G1 chromosome forms a single-chain string of loop clusters (micelles), with each loop ∼1–2 Mbp in size. The number of ∼20 loops per micelle was estimated from the dependence of geometrical versus genomic distances between two points on a G1 chromosome. The greater degree of chromatin extension in R versus G minibands and a difference in the replication time for these minibands (early S phase for R versus late S phase for G) are explained in this model as a result of the location of R minibands at micelle cores and G minibands at loop apices. The estimated number of micelles per nucleus is close to the observed number of replication clusters at the onset of S phase. A relationship between chromosomal and nuclear sizes for several types of higher eukaryotic cells (insects, plants, and mammals) is well described through the micelle structure of interphase chromosomes. For yeast cells, this relationship is described by a linear coil configuration of chromosomes.