928 resultados para High Speed Craft


Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文介绍一种能在恶劣海况下 ,向遇险船舶送递导引缆绳和向落水人员快速送递救生圈的水面救助机器人 .该机器人具有抗涌浪能力强、体积小、重量轻、速度快以及机动灵活的特点 ,还可广泛应用于其他领域

Relevância:

80.00% 80.00%

Publicador:

Resumo:

机器人行走空间的复杂性决定了导航监控系统不仅为机器人提供行走路线,还要依据预先得到的先验数据与知识告诉机器人不同行走段的障碍分布、环境边界走向及约束程度,按照载体的几何形状,运动特性选择合适的速度、加速度,保证在安全的前提下最快完成行走.本文讨论了提取影响机器人当前行走的障碍、环境边界算法和不同行走速度段的划分与关键点抽取方法,讨论了各种速度段的分离、合并、高速行走段的插补和过短行走段的平滑滤除等等.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文以跟踪电视系统中自适应量化器为设计背景,提出了一种新的、实时自适应的快速图象量化方法——逐极均值法,文中首先用Lloyd-Max最佳量化理论分析了这种量化方法的均方误差失真,讨沦了图象中存在孤立亮点时的处理方法。然后论述了这种量化方法应用于跟踪电视系统中的性能,即实现的简单、快速性;对照度变化的自适应性;及图象对比度增强效果。文中通过图象处理实验结果验证了这种量化方法的性能和理论分析的正确性。最后得出结论:逐极均值法量化器是一种能够代替LlodyMax最佳量化器的次佳量化器,这种量化器可以很好地满足跟踪电视系统中对自适应量化器的设计所提出的各方面性能要求;它对那些要求实现简单、实时自适应的量化器应用领域也将具有一定意义。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文给出了一种具有前馈等值的二阶无静差数字随动系统的设计方法。按照这种设计方法,只要在计算的基础上适当地调整前馈系数和开环增益,即可得到满意的系统性能指标。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文以感应同步器工作原理为出发点,提出基本环节的设计思想,研制出高速角度编码器。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

针对目前焊缝坐标提取方法存在精度较低,难于实现视觉引导的机器人激光焊接高速度、高精度的要求,提出一种基于Zernike正交矩的曲线焊缝位置坐标信息获取算法,该算法首先采用Zernike边缘检测算法识别焊缝边缘,然后提取出焊缝的中心线,最后计算出该中心线的亚像素坐标。通过试验验证了该算法的可行性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文讨论了基于视觉和结构光的焊缝形貌视觉检测系统的组成原理,针对拼板激光焊接工程中对焊缝检测的实时性要求高的特点,创新性地提出了一种快速获得焊缝错配缺陷的算法,主要步骤为:首先基于有关标准的检测指标阈值的设定,再次,针对在线提取到的图像进行预处理,主要是加窗和中值滤波;最后为Radon变换与错配检测。该算法能减少计算任务,从而快速获得错配检测指标。实验给出了不等厚板拼焊时的线性错配的数值和分布,同时验证了该算法的有效性。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PASSIM卷接机组原控制系统采用电路板进行逻辑控制,抗干扰性能差,故障率高,造成生产效率降低、原材料消耗增大、维修工作繁重等。为此,设计了一套新型卷接机组电气控制系统。该系统采用PLC进行过程控制,以工控机为上位机完成人机通信,采用交流伺服驱动,并通过高速信号处理专用系统完成重量检测控制及烟支质量检测功能;利用PROFIBUS、CAN及MPI多种总线方式完成各单元间的通讯,实现信号和数据间的传递和共享。改进后的PASSIM机组运行稳定可靠,采样速度快,实时性强,且维修方便。机组的有效作业率由85%左右提高到90%以上,降低了卷烟纸和烟丝等原材料的消耗。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在研究快速傅里叶变换(FFT)算法的基础上,根据FPGA性能高、灵活性强、速度快的特点,提出了高效的基4-FFT处理器的实现方法。数据存储采用分块存储的方法,大大提高了存取速度。数据寻址采用新型的地址产生方法,可并行产生所需数据地址。同时,在蝶形单元的设计中很好的将并行运算技术和流水线技术相结合了起来,又进一步提高了运算速度。测试结果表明,时钟在50MHz时完成1024点FFT的时间为25.6μs,满足了应用实时性的要求。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

目的利用单片机技术设计多路温度测控系统,实现多路温度的测量和控制.方法系统以单片机AT89C52为核心,利用多路转换器和新型数字器件MAX6675构成8路K型热电偶温度测量电路,利用D/A转换器AD7528和驱动电路构成输出电路,实现8路一一对应的闭环温度测量控制.系统软件采用PID控制器.结果实践证明,可根据需要增减系统温度信号采样通道的数目,使用软件抗干扰措施,提高了采样数据的可靠性.简化了输入输出硬件结构,使系统具有低成本高速度和较好的测量控制精度.结论多路温度测控系统作为整机适用于现场测量控制应用,也可作为多路温度控制模块应用在体积小、温度测量精度要求较高的大型系统中.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seismic Numerical Modeling is one of bases of the Exploratory Seismology and Academic Seismology, also is a research field in great demand. Essence of seismic numerical modeling is to assume that structure and parameters of the underground media model are known, simulate the wave-field and calculate the numerical seismic record that should be observed. Seismic numerical modeling is not only a means to know the seismic wave-field in complex inhomogeneous media, but also a test to the application effect by all kinds of methods. There are many seismic numerical modeling methods, each method has its own merits and drawbacks. During the forward modeling, the computation precision and the efficiency are two pivotal questions to evaluate the validity and superiority of the method. The target of my dissertation is to find a new method to possibly improve the computation precision and efficiency, and apply the new forward method to modeling the wave-field in the complex inhomogeneous media. Convolutional Forsyte polynomial differentiator (CFPD) approach developed in this dissertation is robust and efficient, it shares some of the advantages of the high precision of generalized orthogonal polynomial and the high speed of the short operator finite-difference. By adjusting the operator length and optimizing the operator coefficient, the method can involve whole and local information of the wave-field. One of main tasks of the dissertation is to develop a creative, generalized and high precision method. The author introduce convolutional Forsyte polynomial differentiator to calculate the spatial derivative of seismic wave equation, and apply the time staggered grid finite-difference which can better meet the high precision of the convolutional differentiator to substitute the conventional finite-difference to calculate the time derivative of seismic wave equation, then creating a new forward method to modeling the wave-field in complex inhomogeneous media. Comparing with Fourier pseudo-spectral method, Chebyshev pseudo-spectral method, staggered- grid finite difference method and finite element method, convolutional Forsyte polynomial differentiator (CFPD) method has many advantages: 1. Comparing with Fourier pseudo-spectral method. Fourier pseudo-spectral method (FPS) is a local operator, its results have Gibbs effects when the media parameters change, then arose great errors. Therefore, Fourier pseudo-spectral method can not deal with special complex and random heterogeneous media. But convolutional Forsyte polynomial differentiator method can cover global and local information. So for complex inhomogeneous media, CFPD is more efficient. 2. Comparing with staggered-grid high-order finite-difference method, CFPD takes less dots than FD at single wave length, and the number does not increase with the widening of the studying area. 3. Comparing with Chebyshev pseudo-spectral method (CPS). The calculation region of Chebyshev pseudo-spectral method is fixed in , under the condition of unchangeable precision, the augmentation of calculation is unacceptable. Thus Chebyshev pseudo-spectral method is inapplicable to large area. CFPD method is more applicable to large area. 4. Comparing with finite element method (FE), CFPD can use lager grids. The other task of this dissertation is to study 2.5 dimension (2.5D) seismic wave-field. The author reviews the development and present situation of 2.5D problem, expatiates the essentiality of studying the 2.5D problem, apply CFPD method to simulate the seismic wave-field in 2.5D inhomogeneous media. The results indicate that 2.5D numerical modeling is efficient to simulate one of the sections of 3D media, 2.5D calculation is much less time-consuming than 3D calculation, and the wave dispersion of 2.5D modeling is obviously less than that of 3D modeling. Question on applying time staggered-grid convolutional differentiator based on CFPD to modeling 2.5D complex inhomogeneous media was not studied by any geophysicists before, it is a fire-new creation absolutely. The theory and practices prove that the new method can efficiently model the seismic wave-field in complex media. Proposing and developing this new method can provide more choices to study the seismic wave-field modeling, seismic wave migration, seismic inversion, and seismic wave imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Qianmiqiao buried hill, which is a high-yield burial hill pool, was discovered at Dagang oilfield in 1998. To employ the integrated geological and geophysical research at Qianmiqiao area, it is very valuable and meaningful for the petroleum exploration of Bohai Bay Basin and even the whole country. Based on the previous results, this paper is carried out from the research on Huanghua depression, following the law, i.e. the deep part constrains the shallow, the regional constrains the local, takes the geophysical research in Qianmiqiao oilfield, discusses the formation history of burial hills, burial history, thermal history, the generated and expelling history of hydrocarbon, and migration characteristics, probes into the formation of burial hill pool. This paper uses the gravity and magnetic methods which are based on potential field, with natural sources, configures the inner structure of the earth according to the difference in the density and magnetism of the rock. The geophysical characteristics of Dagang oil field is that it is an area with positive Buge gravity anomal. The upheaval of Moho boundary is in mirror symmetry with the depression of the basin's basement. The positive and negative anomaly distributein axis symmetry, and the orientation is NNE. The thickness of the crust gradually reduces from west to east, from land to sea. The depth gradient strip of Curie surface is similar to Moho boundary, whereas their local buried depth is different. Local fractures imply that the orientation of base rock fractures is NNE-NE, and the base rock is intersected by the fractures of the same/ later term, whose orientation is NW, so the base rock likes rhombic mosaic. The results of tomography show that there exists significant asymmetry in vertical and horizontal direction in the velocity configuration of Huanghua depression. From Dezhou to Tianjin, there exits high-speed block, which extends from south to north. The bottom of this high-speed block is in good agreement with the depth of Moho boundary. Hence we can conclude that the high-speed block is actually the crystal basement. According to seismic data, well data and outcrop data, Huanghua depression can be divided into four structure layers, i.e. Pi,2-T, Ji,2-K, E, N-Q. Qianmiqiao burial hills undergo many tectonic movement, where reverse faults in developed in inner burial hill from Indosinian stage to Yanshanian stage, the normal faults extended in Himalayan stage. Under the influence of tectonic movements, the burial hills show three layers, i.e. the reverse rushing faults in buried hills, paleo-residual hill, and extended horst block. The evolution of burial hills can be divided into four stages: steady raising period from Calenonian to early Hercynian, rushing brake drape period from Indosinian to middle Yanshanian, block tilting period in early Tertiary, and heating depression period from late Tertiary to Quaternary. The basin modeling softwares BasinMod 1-D and Basin 2-D, which are made by PRA corporation, are used in this paper, according to the requirement, corresponding geological model is designed. And we model the burial history, thermal history, hydrocarbon generation and hydrocarbon expelling history of Qianmiqiao area. The results show that present bury depth is the deepest in the geological history, the sedimentary rate of Tertiary is highest and its rising rate of temperature rate is higher. During sedimentary history, there is no large erosion, and in the Tertiary, the deeper sediment was deposited in large space, therefore it is in favor of the conservation and transformation of oil and gas. The thermal research shows that the heat primarily comes from basement of the basin, present geotherm is the highest temperature in the geological history. Major source rock is the strata of ES3, whose organic is abundant, good-typed, maturative and of high-expulsive efficiency. The organic evolution of source rock of O has come to the overmature stage, the evolving time is long and the source rock can be easily destroyed. Therefore it is more difficult for the O formation source rock to form the huge accumulation of oil and gas than Es3 formation. In the research of oil assembling, we first calculated the characteristics of the fluid pressure of single well, then analyzed the distribution of the surplus fluid pressure of each formation and profile, and probe the first hydrocarbon migration situation and the distribution of pressure system of buried hill pool. In every formation, the pressure system of each burial hill has its own characteristics, e.g. high pressure or low pressure. In the research of secondary migration, the fluid potential is calculated while the relative low potential area is figured out. In Qianmiqiao area, the west margin faults have the low potential, and hence is the favorable reconnoiter belt.