939 resultados para Hexapod robot


Relevância:

10.00% 10.00%

Publicador:

Resumo:

People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Across the world there are many bodies currently involved in researching into the design of autonomous guided vehicles (AGVs). One of the greatest problems at present however, is that much of the research work is being conducted in isolated groups, with the resulting AGVs sensor/control/command systems being almost completely nontransferable to other AGV designs. This paper describes a new modular method for robot design which when applied to AGVs overcomes the above problems. The method is explained here with respect to all forms of robotics but the examples have been specifically chosen to reflect typical AGV systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a look is taken at how the use of implant and electrode technology can be employed to create biological brains for robots, to enable human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking a biological brain directly with computer technology. The emphasis is placed on practical scientific studies that have been and are being undertaken and reported on. The area of focus is the use of electrode technology, where either a connection is made directly with the cerebral cortex and/or nervous system or where implants into the human body are involved. The paper also considers robots that have biological brains in which human neurons can be employed as the sole thinking machine for a real world robot body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this article is to identify the key factors that are associated with the adoption of a commercial robot in the home. This article is based on the development of the robot product Cybot by the University of Reading in conjunction with a publisher (Eaglemoss International Ltd.). The robots were distributed through a new part-work magazine series (Ultimate Real Robots) that had long-term customer usage and retention. A part-work is a serial publication that is issued periodically (e.g., every two weeks), usually in magazine format, and builds into a complete collection. This magazine focused on robotics and was accompanied by cover-mounted component parts that could be assembled, with instructions, by the user to build a working robot over the series. In total, the product contributed over half a million operational domestic robots to the world market, selling over 20 million robot part-work magazines across 18 countries, thereby providing a unique breadth of insight. Gaining a better understanding of the overall attitudes that customers of this product had toward robots in the home, their perception of what such devices could deliver and how they would wish to interact with them should provide results applicable to the domestic appliance, assistance/care, entertainment, and educational markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In his forum paper, Prof. Kevin Warwick considers four different examples of how the use of implant technology is opening up the possibility of upgrading human abilities, particularly in terms of mental cognition. The main thrust is an overview of Prof. Warwick's own research, which led to him receiving a neural implant linking his nervous system bi-directionally with the internet. With this implant in place, neural signals were transmitted to various technological devices to directly control them, in some cases via the internet, and feedback to the brain was obtained from such stimuli as the fingertips of a robot hand, ultrasonic (extra-) sensory input and neural signals directly from another human's nervous system. A view is taken as to the prospects for the future, both in the short-term as a therapeutic device and in the long-term as a form of enhancement, including the realistic potential, in the near future, for thought communication – thereby opening up tremendous commercial potential. The therapy/enhancement dichotomy is considered here, as well as military and medical issues. Clearly though, an individual whose brain is part human/part machine can have abilities that far surpass those who remain with a human brain alone. Will such an individual exhibit different moral and ethical values to those of a human? If so, what effects might this have on society?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intelligent viewing systems are required if efficient and productive teleoperation is to be applied to dynamic manufacturing environments. These systems must automatically provide remote views to an operator which assist in the completion of the task. This assistance increases the productivity of the teleoperation task if the robot controller is responsive to the unpredictable dynamic evolution of the workcell. Behavioral controllers can be utilized to give reactive 'intelligence.' The inherent complex structure of current systems, however, places considerable time overheads on any redesign of the emergent behavior. In industry, where the remote environment and task frequently change, this continual redesign process becomes inefficient. We introduce a novel behavioral controller, based on an 'ego-behavior' architecture, to command an active camera (a camera mounted on a robot) within a remote workcell. Using this ego-behavioral architecture the responses from individual behaviors are rapidly combined to produce an 'intelligent' responsive viewing system. The architecture is single-layered, each behavior being autonomous with no explicit knowledge of the number, description or activity of other behaviors present (if any). This lack of imposed structure decreases the development time as it allows each behavior to be designed and tested independently before insertion into the architecture. The fusion mechanism for the behaviors provides the ability for each behavior to compete and/or co-operate with other behaviors for full or partial control of the viewing active camera. Each behavior continually reassesses this degree of competition or co-operation by measuring its own success in controlling the active camera against pre-defined constraints. The ego-behavioral architecture is demonstrated through simulation and experimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents an overview of dynamic systems with inherent delays in both feedforward and feedback paths and how the performance of such systems can be affected by such delays. The authors concentrate on visually guided systems, where the behaviour of the system is largely dependent on the results of the vision sensors, with particular reference to active robot heads (real-time gaze control). We show how the performance of such systems can deteriorate substantially with the presence of unknown and/or variable delays. Considered choice of system architecture, however, allows the performance of active vision systems to be optimised with respect to the delays present in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors address the problems in using a fiber-optic proximity sensor to detect robot end-effector positioning errors in performing a contact task when uncertainties about target position exist. An extended Kalman filter approach is employed to solve the nonlinear filtering problem. Some experimental results are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental and theoretical comparison is made of force control performance with different types of innerloop joint servoing techniques. The problem of disturbance rejection and sensitivity to plant dynamics variations (robustness) is addressed. Position, velocity, strain gauge derived joint torque, and current servos are designed and implemented on a specially instrumented industrial robot, and the end-effector force feedback performances achieved are compared. Joint strain derived torque servoing is found to provide the best overall robust force control performance. Experimental results of the robust hard-on-hard contact achieved with the novel force controller implementation based on joint torque sensing are provided. Conclusions are drawn on the force control performance achievable on a geared robot given the joint servoing technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiking neural networks are usually limited in their applications due to their complex mathematical models and the lack of intuitive learning algorithms. In this paper, a simpler, novel neural network derived from a leaky integrate and fire neuron model, the ‘cavalcade’ neuron, is presented. A simulation for the neural network has been developed and two basic learning algorithms implemented within the environment. These algorithms successfully learn some basic temporal and instantaneous problems. Inspiration for neural network structures from these experiments are then taken and applied to process sensor information so as to successfully control a mobile robot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to fabricate a biomimetic skin for an octopus inspired robot, a new process was developed based on mechanical properties measured from real octopus skin. Various knitted nylon textiles were tested and the one of 10-denier nylon was chosen as reinforcement. A combination of Ecoflex 0030 and 0010 silicone rubbers was used as matrix of the composite to obtain the right stiffness for the skin-analogue system. The open mould fabrication process developed allows air bubble to escape easily and the artificial skin produced was thin and waterproof. Material properties of the biomimetic skin were characterised using static tensile and instrumented scissors cutting tests. The Young’s moduli of the artificial skin are 0.08 MPa and 0.13 MPa in the longitudinal and transverse directions, which are much lower than those of the octopus skin. The strength and fracture toughness of the artificial skin, on the other hand are higher than those of real octopus skins. Conically-shaped skin prototypes to be used to cover the robotic arm unit were manufactured and tested. The biomimetic skin prototype was stiff enough to maintain it conical shape when filled with water. The driving force for elongation was reduced significantly compared with previous prototypes.