932 resultados para HMM, Nosocomial Pathogens, Genotyping, Statistical Modelling, VRE
Resumo:
Background Many studies have found associations between climatic conditions and dengue transmission. However, there is a debate about the future impacts of climate change on dengue transmission. This paper reviewed epidemiological evidence on the relationship between climate and dengue with a focus on quantitative methods for assessing the potential impacts of climate change on global dengue transmission. Methods A literature search was conducted in October 2012, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search focused on peer-reviewed journal articles published in English from January 1991 through October 2012. Results Sixteen studies met the inclusion criteria and most studies showed that the transmission of dengue is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. Studies on the potential impacts of climate change on dengue indicate increased climatic suitability for transmission and an expansion of the geographic regions at risk during this century. A variety of quantitative modelling approaches were used in the studies. Several key methodological issues and current knowledge gaps were identified through this review. Conclusions It is important to assemble spatio-temporal patterns of dengue transmission compatible with long-term data on climate and other socio-ecological changes and this would advance projections of dengue risks associated with climate change. Keywords: Climate; Dengue; Models; Projection; Scenarios
Resumo:
A numerical investigation of the behaviour of fuel injection through a porous surface in an inlet-fuelled, radial-farming scramjet is presented. The performance of porous fuel injection is compared to discrete port hole injection at an equivalence ratio of φ ≈ 0.4 for both cases. The comparison is performed at a Mach 6.5 flow condition with a total specific enthalpy of 4.3 MJ/kg. The numerical results are compared to experiments performed in the T4 shock tunnel where available. The presented results demonstrate for the first time, that porous fuel injection has the potential to outperform port hole injectors in scramjet engines in terms of fuel-air mixing, ignition delays and achievable combustion efficiencies despite reduced fuel penetration heights.
Resumo:
Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Many research studies have been carried out to evaluate the behaviour and design of LCBs subject to pure bending actions. However, limited research has been undertaken on the shear behaviour and strength of LCBs. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study based on the validated finite element models. Numerical studies were conducted to investigate the shear buckling and post-buckling behaviour of LCBs. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs. Improved design equations were therefore proposed for the shear strength of LCBs. This paper presents the details of this numerical study of LCBs and the results.
Resumo:
Chronic leg ulcers are costly to manage for health service providers. Although evidence-based care leads to improved healing rates and reduced costs, a significant evidence-practice gap is known to exist. Lack of access to specialist skills in wound care is one reason suggested for this gap. The aim of this study was to model the change to total costs and health outcomes under two versions of health services for patients with leg ulcers: routine health services for community-living patients; and care provided by specialist wound clinics. Mean weekly treatment and health services costs were estimated from participants’ data (n=70) for the twelve months prior to their entry to a study specialist wound clinic, and prospectively for 24 weeks after entry. For the retrospective phase mean weekly costs of care were $AU130.30 (SD $12.64) and these fell to $AU53.32 (SD $6.47) for the prospective phase. Analysis at a population level suggests if 10,000 individuals receive 12 weeks of specialist evidence-based care, the cost savings are likely to be AU$9,238,800. Significant savings could be made by the adoption of evidence-based care such as that provided by the community and outpatient specialist wound clinics in this study.
Resumo:
Although there was substantial research into the occupational health and safety sector over the past forty years, this generally focused on statistical analyses of data related to costs and/or fatalities and injuries. There is a lack of mathematical modelling of the interactions between workers and the resulting safety dynamics of the workplace. There is also little work investigating the potential impact of different safety intervention programs prior to their implementation. In this article, we present a fundamental, differential equation-based model of workplace safety that treats worker safety habits similarly to an infectious disease in an epidemic model. Analytical results for the model, derived via phase plane and stability analysis, are discussed. The model is coupled with a model of a generic safety strategy aimed at minimising unsafe work habits, to produce an optimal control problem. The optimal control model is solved using the forward-backward sweep numerical scheme implemented in Matlab.
Resumo:
Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012
Resumo:
In this paper, we explore how BIM functionalities together with novel management concepts and methods have been utilized in thirteen hospital projects in the United States and the United Kingdom. Secondary data collection and analysis were used as the method. Initial findings indicate that the utilization of BIM enables a holistic view of project delivery and helps to integrate project parties into a collaborative process. The initiative to implement BIM must come from the top down to enable early involvement of all key stakeholders. It seems that it is rather resistance from people to adapt to the new way of working and thinking than immaturity of technology that hinders the utilization of BIM.
Resumo:
This paper investigates the mutual relations of three current drivers of construction: lean construction, building information modelling and sustainability. These drivers are based on infrequently occurring changes, only incidentally simultaneous, in their respective domains. It is contended that the drivers are mutually supportive and thus synergistic. They are aligned in the sense that all require, promote or enable collaboration. It is argued that these three drivers should be implemented in a unified manner for rapid and robust improvements in construction industry performance and the quality of the constructed facilities and their benefits for stakeholders and wider society.
Resumo:
Building with Building Information Modelling (BIM) changes design and production processes. But can BIM be used to support process changes designed according to lean production and lean construction principles? To begin to answer this question we provide a conceptual analysis of the interaction of lean construction and BIM for improving construction. This was investigated by compiling a detailed listing of lean construction principles and BIM functionalities which are relevant from this perspective. These were drawn from a detailed literature survey. A research framework for analysis of the interaction between lean and BIM was then compiled. The goal of the framework is to both guide and stimulate research; as such, the approach adopted up to this point is constructive. Ongoing research has identified 55 such interactions, the majority of which show positive synergy between the two.
Resumo:
This paper is a modified version of a lecture which describes the synthesis, structure and reactivity of some neutral molecules of stellar significance. The neutrals are formed in the collision cell of a mass spectrometer following vertical Franck-Condon one electron oxidation of anions of known bond connectivity. Neutrals are characterised by conversion to positive ions and by extensive theoretical studies at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory. Four systems are considered in detail, viz (i) the formation of linear C-4 and its conversion to the rhombus C-4, (ii) linear C-5 and the atom scrambling of this system when energised, (iii) the stable cumulene oxide CCCCCO, and (iv) the elusive species O2C-CO. This paper is not intended to be a review of interstellar chemistry: examples are selected from our own work in this area. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Passenger experience has become a major factor that influences the success of an airport. In this context, passenger flow simulation has been used in designing and managing airports. However, most passenger flow simulations failed to consider the group dynamics when developing passenger flow models. In this paper, an agent-based model is presented to simulate passenger behaviour at the airport check-in and evacuation process. The simulation results show that the passenger behaviour can have significant influences on the performance and utilisation of services in airport terminals. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
Background Sexually-transmitted pathogens often have severe reproductive health implications if treatment is delayed or absent, especially in females. The complex processes of disease progression, namely replication and ascension of the infection through the genital tract, span both extracellular and intracellular physiological scales, and in females can vary over the distinct phases of the menstrual cycle. The complexity of these processes, coupled with the common impossibility of obtaining comprehensive and sequential clinical data from individual human patients, makes mathematical and computational modelling valuable tools in developing our understanding of the infection, with a view to identifying new interventions. While many within-host models of sexually-transmitted infections (STIs) are available in existing literature, these models are difficult to deploy in clinical/experimental settings since simulations often require complex computational approaches. Results We present STI-GMaS (Sexually-Transmitted Infections – Graphical Modelling and Simulation), an environment for simulation of STI models, with a view to stimulating the uptake of these models within the laboratory or clinic. The software currently focuses upon the representative case-study of Chlamydia trachomatis, the most common sexually-transmitted bacterial pathogen of humans. Here, we demonstrate the use of a hybrid PDE–cellular automata model for simulation of a hypothetical Chlamydia vaccination, demonstrating the effect of a vaccine-induced antibody in preventing the infection from ascending to above the cervix. This example illustrates the ease with which existing models can be adapted to describe new studies, and its careful parameterisation within STI-GMaS facilitates future tuning to experimental data as they arise. Conclusions STI-GMaS represents the first software designed explicitly for in-silico simulation of STI models by non-theoreticians, thus presenting a novel route to bridging the gap between computational and clinical/experimental disciplines. With the propensity for model reuse and extension, there is much scope within STI-GMaS to allow clinical and experimental studies to inform model inputs and drive future model development. Many of the modelling paradigms and software design principles deployed to date transfer readily to other STIs, both bacterial and viral; forthcoming releases of STI-GMaS will extend the software to incorporate a more diverse range of infections.
Computation of ECG signal features using MCMC modelling in software and FPGA reconfigurable hardware
Resumo:
Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.