945 resultados para HIGH-ENERGY PROTONS
Resumo:
In this paper, based on the AdS(2)/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z -> infinity). In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z = 5 fixed point. (C) 2015 The Author. Published by Elsevier B.V.
Resumo:
In this paper, based on the holographic techniques, we explore the hydrodynamics of charge diffusion phenomena in non commutative N = 4 SYM plasma at strong coupling. In our analysis, we compute the R charge diffusion rates both along commutative as well as the non commutative coordinates of the brane. It turns out that unlike the case for the shear viscosity, the DC conductivity along the non commutative direction of the brane differs significantly from that of its cousin corresponding to the commutative direction of the brane. Such a discrepancy however smoothly goes away in the limit of the vanishing non commutativity.
Resumo:
We present estimates of single spin asymmetry (SSA) in the electroproduction of taking into account the transverse momentum dependent (TMD) evolution of the gluon Sivers function and using Color Evaporation Model of charmonium production. We estimate SSA for JLab, HERMES, COMPASS and eRHIC energies using recent parameters for the quark Sivers functions which are fitted using an evolution kernel in which the perturbative part is resummed up to next-to-leading logarithms accuracy. We find that these SSAs are much smaller as compared to our first estimates obtained using DGLAP evolution but are comparable to our estimates obtained using TMD evolution where we had used approximate analytical solution of the TMD evolution equation for the purpose.
Resumo:
We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.
Resumo:
We give a review on (a) elements of (2 + 1)-dimensional gravity, (b) some aspects of its relation to Chern-Simons theory, (c) its generalization to couple higher spins, and (d) cosmic singularity resolution as an application in the context of flat space higher spin theory. A knowledge of the Einstein-Hilbert action, classical non-Abelian gauge theory and some (negotiable amount of) maturity are the only pre-requisites.
Resumo:
The discovery of a Higgs boson with a mass of 126 GeV at the LHC when combined with the non-observation of new physics both in direct and indirect searches imposes strong constraints on supersymmetric models and in particular on the top squark sector. The experiments for direct detection of dark matter have provided with yet more constraints on the neutralino LSP mass and its interactions. After imposing limits from the Higgs, flavour and dark matter sectors, we examine the feasibility for a light stop in the context of the pMSSM, in light of current results for stop and other SUSY searches at the LHC. We only require that the neutralino dark matter explains a fraction of the cosmologically measured dark matter abundance. We find that a stop with mass below similar to 500 GeV is still allowed. We further study various probes of the light stop scenario that could be performed at the LHC Run-II either through direct searches for the light and heavy stop, or SUSY searches not currently available in simplified model results. Moreover we study the characteristics of heavy Higgs for the points in the parameter space allowed by all the available constraints and illustrate the region with large cross sections to fermionic or electroweakino channels. Finally we show that nearly all scenarios with a small stop-LSP mass difference will be tested by Xenon1T provided the NLSP is a chargino, thus probing a region hard to access at the LHC.
Resumo:
I consider theories of gravity built not just from the metric and affine connection, but also other (possibly higher rank) symmetric tensor(s). The Lagrangian densities are scalars built from them, and the volume forms are related to Cayley's hyperdeterminants. The resulting diff-invariant actions give rise to geometric theories that go beyond the metric paradigm (even metric-less theories are possible), and contain Einstein gravity as a special case. Examples contain theories with generalizeations of Riemannian geometry. The 0-tensor case is related to dilaton gravity. These theories can give rise to new types of spontaneous Lorentz breaking and might be relevant for ``dark'' sector cosmology.
Resumo:
Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.
Resumo:
We consider a simple renormalizable model providing a UV completion for dark matter whose interactions with the Standard Model are primarily via the gluons. The model consists of scalar dark matter interacting with scalar colored mediator particles. A novel feature is the fact that (in contrast to more typical models containing dark matter whose interactions are mediated via colored scalars) the colored scalars typically decay into multi-quark final states, with no associated missing energy. We construct this class of models and examine associated phenomena related to dark matter annihilation, scattering with nuclei, and production at colliders.
Resumo:
We develop a new method to study the thermalization of time dependent retarded Green function in conformal field theories holographically dual to thin shell AdS Vaidya space times. The method relies on using the information of all time derivatives of the Green function at the shell and then evolving it for later times. The time derivatives of the Green function at the shell is given in terms of a recursion formula. Using this method we obtain analytic results for short time thermalization of the Green function. We show that the late time behaviour of the Green function is determined by the first quasinormal mode. We then implement the method numerically. As applications of this method we study the thermalization of the retarded time dependent Green function corresponding to a minimally coupled scalar in the AdS 3 and AdS 5 thin Vaidya shells. We see that as expected the late time behaviour is determined by the first quasinormal mode. We apply the method to study the late time behaviour of the shear vector mode in AdS 5 Vaidya shell. At small momentum the corresponding time dependent Green function is expected to relax to equilibrium by the shear hydrodynamic mode. Using this we obtain the universal ratio of the shear viscosity to entropy density from a time dependent process.
Resumo:
In this paper we consider anomalous dimensions of double trace operators at large spin (l) and large twist (tau) in CFTs in arbitrary dimensions (d >= 3). Using analytic conformal bootstrap methods, we show that the anomalous dimensions are universal in the limit l >> tau >> 1. In the course of the derivation, we extract an approximate closed form expression for the conformal blocks arising in the four point function of identical scalars in any dimension. We compare our results with two different calculations in holography and find perfect agreement.
Resumo:
We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT similar to 0.8 keV) blackbody and a power law with high energy cutoff (E-cut similar to 5.4 keV) without the need for a broad Gaussian at similar to 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at similar to 11 and similar to 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (similar to 11 and similar to 15 keV) as a single CRSF.
Resumo:
We examine the deflected mirage mediation supersymmetry breaking (DMMSB) scenario, which combines three supersymmetry breaking scenarios, namely anomaly mediation, gravity mediation and gauge mediation using the one-loop renormalization group invariants (RGIs). We examine the effects on the RGIs at the threshold where the gauge messengers emerge, and derive the supersymmetry breaking parameters in terms of the RGIs. We further discuss whether the supersymmetry breaking mediation mechanism can be determined using a limited set of invariants, and derive sum rules valid for DMMSB below the gauge messenger scale. In addition we examine the implications of the measured Higgs mass for the DMMSB spectrum.
Resumo:
The ATLAS and CMS collaborations at the LHC have performed analyses on the existing data sets, studying the case of one vector-like fermion or multiplet coupling to the standard model Yukawa sector. In the near future, with more data available, these experimental collaborations will start to investigate more realistic cases. The presence of more than one extra vector-like multiplet is indeed a common situation in many extensions of the standard model. The interplay of these vector-like multiplet between precision electroweak bounds, flavour and collider phenomenology is a important question in view of establishing bounds or for the discovery of physics beyond the standard model. In this work we study the phenomenological consequences of the presence of two vector-like multiplets. We analyse the constraints on such scenarios from tree-level data and oblique corrections for the case of mixing to each of the SM generations. In the present work, we limit to scenarios with two top-like partners and no mixing in the down-sector.
Resumo:
Selective and discriminative detection of -NO2 containing high energy organic compounds such as picric acid (PA), 2,4,6-trinitrotoluene (TNT) and dinitrotoluene (DNT) has become a challenging task due to concerns over national security, criminal investigations and environment protections. Among various known detection methods, fluorescence techniques have gained special attention in recent time. A wide variety of fluorescent chemosensors have been developed for nitroaromatic explosive detection. In this review article, we provide an overview of the recent developments made in small molecule-based turn-off fluorescent sensors for nitroaromatic explosives with special focus on organic and H-bonded supramolecular sensors. The fluorescent sensors discussed in this review are classified and organized according to their functionality and their recognition of nitroaromatics by fluorescence quenching.