927 resultados para HARMONIC IMPEDANCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An impedance method was developed to determine how immune system cells (hemocyte) interact with intruder cells (parasites). When the hemocyte cells interact with the parasites, they cause a defensive reaction and the parasites start to aggregate in clusters. The level of aggregation is a measure of the host-parasite interaction, and provides information about the efficiency of the immune system response. The cell aggregation is monitored using a set of microelectrodes. The impedance spectrum is measured between each individual microelectrode and a large reference electrode. As the cells starts to aggregate and settle down towards the microelectrode array the impedance of the system is changed. It is shown that the system impedance is very sensitive to the level of cell aggregation and can be used to monitor in real time the interaction between hemocyte cells and parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical impedance tomography is applied to the problem of detecting, locating, and tracking fractures in ballistics gelatin. The hardware developed is intended to be physically robust and based on off-the-shelf hardware. Fractures were created in two separate ways: by shooting a .22 caliber bullet into the gelatin and by injecting saline solution into the gelatin. The .22 caliber bullet created an air gap, which was seen as an increase in resistivity. The saline solution created a fluid filled gap, which was seen as a decrease in resistivity. A double linear array was used to take data for each of the fracture mechanisms and a two dimensional cross section was inverted from the data. The results were validated by visually inspecting the samples during the fracture event. It was found that although there were reconstruction errors present, it was possible to reconstruct a representation of the resistive cross section. Simulations were performed to better understand the reconstructed cross-sections and to demonstrate the ability of a ring array, which was not experimentally tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage source inverter (VSI) and current voltage source inverter (CSI) are widely used in industrial application. But the traditional VSIs and CSIs have one common problem: can’t boost or buck the voltage come from battery, which make them impossible to be used alone in Hybrid Electric Vehicle (HEV/EV) motor drive application, other issue is the traditional inverter need to add the dead-band time into the control sequence, but it will cause the output waveform distortion. This report presents an impedance source (Z-source network) topology to overcome these problems, it can use one stage instead of two stages (VSI or CSI + boost converter) to buck/boost the voltage come from battery in inverter system. Therefore, the Z-source topology hardware design can reduce switching element, entire system size and weight, minimize the system cost and increase the system efficiency. Also, a modified space vector pulse-width modulation (SVPWM) control method has been selected with the Z-source network together to achieve the best efficiency and lower total harmonic distortion (THD) at different modulation indexes. Finally, the Z-source inverter controlling will modulate under two control sequences: sinusoidal pulse width modulation (SPWM) and SVPWM, and their output voltage, ripple and THD will be compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) is a helpful tool to understand how a battery is behaving and how it degrades. One of the disadvantages is that it is typically an 'off-line' process. This paper investigates an alternative method of looking at impedance spectroscopy of a battery system while it is on-line and operational by manipulating the switching pattern of the dc-dc converter to generate low frequency harmonics in conjunction with the normal high frequency switching pattern to determine impedance in real time. However, this adds extra ripple on the inductor which needs to be included in the design calculations. The paper describes the methodology and presents some experimental results in conjunction with EIS results to illustrate the concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system policies are broadly on track to escalate the use of renewable energy resources in electric power generation. Integration of dispersed generation to the utility network not only intensifies the benefits of renewable generation but also introduces further advantages such as power quality enhancement and freedom of power generation for the consumers. However, issues arise from the integration of distributed generators to the existing utility grid are as significant as its benefits. The issues are aggravated as the number of grid-connected distributed generators increases. Therefore, power quality demands become stricter to ensure a safe and proper advancement towards the emerging smart grid. In this regard, system protection is the area that is highly affected as the grid-connected distributed generation share in electricity generation increases. Islanding detection, amongst all protection issues, is the most important concern for a power system with high penetration of distributed sources. Islanding occurs when a portion of the distribution network which includes one or more distributed generation units and local loads is disconnected from the remaining portion of the grid. Upon formation of a power island, it remains energized due to the presence of one or more distributed sources. This thesis introduces a new islanding detection technique based on an enhanced multi-layer scheme that shows superior performance over the existing techniques. It provides improved solutions for safety and protection of power systems and distributed sources that are capable of operating in grid-connected mode. The proposed active method offers negligible non-detection zone. It is applicable to micro-grids with a number of distributed generation sources without sacrificing the dynamic response of the system. In addition, the information obtained from the proposed scheme allows for smooth transition to stand-alone operation if required. The proposed technique paves the path towards a comprehensive protection solution for future power networks. The proposed method is converter-resident and all power conversion systems that are operating based on power electronics converters can benefit from this method. The theoretical analysis is presented, and extensive simulation results confirm the validity of the analytical work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the evaluation of the uncertainty of a multivariate quantity using the Law of Propagation of Uncertainty defined in the Guide to the Expression of Uncertainty in Measurement (GUM) and a Monte Carlo method according to the GUM’s Supplement 2. The quantity analysed is the electrical impedance, which is not a scalar but a complex quantity. The used measuring method allows the evaluation of the impedance and of its uncertainty in different ways and the corresponding results are presented, compared and discussed. For comparison purposes, results of the impedance uncertainty obtained using the NIST Uncertainty Machine are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.