954 resultados para Growth and Development
Resumo:
Ptychobarbus dipogon is an endemic fish in the Yarlung Tsangpo River, but its biology is poorly known. We sampled 582 specimens (total length, TL, between 70.6 and 593.0 mm) from April 2004 to August 2006 in the Lhasa River, Tibet. We estimated ages based on the counts of alternating opaque and translucent zones (annuli) in thin transverse sections of lapilli otoliths. Ages ranged from 1(+) to 23(+) years for males and 1(+) to 44(+) for females. The observed 44(+) years was the oldest reported for schizothoracine fishes. Females attained a larger size than males. The TL weight relationship was W=7.12 x 10(-6)TL(3.006) for combined sexes. The growth parameters fitted von Bertalanffy growth functions were L-infinity = 598.66 mm, k=0.0898 year(-1), t(0)=-0.7261 year and W-infinity = 1585.38 g for females and L-infinity = 494.23mm, k=0.1197 year(-1), t(0)=-0.7296 year and W-infinity = 904.88g for males. The longevities of 32.7 year for females and 24.3 year for males were similar to the observed ages. Using an empirical model we estimated the instantaneous rate of total mortality (Z) at 0.28 per year in the lower reaches. Z in the upper and middle stocks was close to the M because of unexploited or lightly exploited stock. Protracted longevity, slow growth, low natural mortality and large body size were typical characteristics of P. dipogon. The current declining trend of P. dipogon could be prevented by altering fishing regulations.
Resumo:
A 2-year investigation of growth and food availability of silver carp and bighead was carried out using stable isotope and gut content analysis in a large pen in Meiliang Bay of Lake Taihu, China. Both silver carp and bighead exhibited significantly higher delta 13C in 2005 than in 2004, which can probably be attributed to two factors: (i) the difference between isotopic compositions at the base of the pelagic food web and (ii) the difference between the compositions of prey items and stable isotopes. The significantly positive correlations between body length, body weight and stable isotope ratios indicated that isotopic changes in silver carp and bighead resulted from the accumulation of biomass concomitant with rapid growth. Because of the drastic decrease in zooplankton in the diet in 2005, silver carp and bighead grew faster in 2004 than in 2005. Bighead carp showed a lower trophic level than silver carp in 2005 as indicated by stable nitrogen isotope ratios, which was possibly explained by the interspecific difference between the prey species and the food quality of silver carp and bighead.
Resumo:
A 115 days feeding trial was conducted to evaluate the effect of dietary cyanobacteria on growth, microcystins (MCs) accumulation in hybrid tilapia (Oreochromis niloticus x O. aureus) and the recovery when the fish were free of cyanobacteria. Three experimental diets were formulated: the control (cyanobacteria free diet); one test diet with cyanobacteria from Lake Taihu (AMt 80.0 mu g MCs g(-1) diet) and one with cyanobacteria from Lake Dianchi (AMd, 410.0 rho g MCs g(-1) diet). Each diet was fed to fish for 60 days and then all fish were free of cyanobacteria for another 55 days. A significant increase in feeding rate (FR) was observed in fish fed AMd diet after a first 30-day exposure (1(st) EP), and in fish fed both AMt diet and AMd diet after a second 30-day exposure (2(nd) EP). Specific growth rates (SGR) of fish fed AMt diet and AMd diet were both obviously affected after the first 30-day exposure, but SGR was only significantly affected in fish fed AMt diet after the second 30-day exposure. After a 55-day recovery, there were no significant differences among diets in the indices mentioned above. Much higher concentrations of MCs were accumulated in tissues of all fish exposed to cyanobacteria. After the 55-day recovery, MC concentrations in fish tissues were significantly lower than those on day 60. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
P>An 83-day growth trial was conducted using a flow-through system to examine the effects of different dietary iron levels on growth and hepatic iron concentration in juvenile gibel carp (Carassius auratus gibelio). Six purified diets supplemented with different levels of iron (0, 10, 30, 60, 100 and 200 mg kg(-1)) (as ferrous sulfate) were fed to triplicate groups of fish (initial weight 2.12 +/- 0.00 g per fish). The results showed that the addition of iron to the basal diet did not significantly affect the specific growth rate (SGR), feed efficiency (FE), survival, red blood cell amount (RBC), hemoglobin content (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) or mean corpuscular hemoglobin concentration (MCHC). Hepatic iron concentration and hematocrit (Hct) were significantly influenced by dietary iron level (P < 0.05). On the basis of the iron concentration for the maintenance of optimum hepatic iron concentration and Hct, it was concluded that the dietary iron concentration of juvenile gibel carp should be not less than 202 mg Fe kg(-1) diet.
Resumo:
The effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii were determined. Of the three temperatures tested, 10, 25 and 35A degrees C, the maximal geosmin concentration and geosmin productivity were yielded at 10A degrees C, while the highest chl a production was observed at 25A degrees C. In the studies on light intensity, the maximal geosmin concentration and geosmin productivity were observed at 10 mu mol m(-2) s(-1), while the highest chl a production was at 20 mu mol m(-2) s(-1). It was suggested that more geosmin was synthesized with lower chl a demand. Meanwhile, the relative amounts of extra- and intracellular geosmin were investigated. Under optimum growth conditions (20 mu mol m(-2) s(-1), 25A degrees C; BG-11 medium), the amounts of extracellular geosmin increased as the growth progressed and reached the maximum in the stationary phase, while the intracellular geosmin reached its maximum value in the late exponential phase, and then began to decline. However, under the low temperature (10A degrees C) or light (10 mu mol m(-2) s(-1)) conditions, more intracellular geosmin was synthesized and mainly accumulated in the cells. The proportions of extracellular geosmin were high, to 33.33 and 32.27%, respectively, during the stationary phase at 35A degrees C and 20 mu mol m(-2) s(-1). It was indicated that low temperature or light could stimulate geosmin production and favor the accumulation of geosmin in cells, while more intracellular geosmin may be released into the medium at higher temperatures or optimum light intensity.
Resumo:
The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.
Resumo:
The physiological responses of Nitzschia palea Kutzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 mu l/L increased the dissolved inorganic carbon (DIC) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher I (k) values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO3 (-) in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO3 (-) and CO2. Although doubled CO2 level would enhance the biomass of N. palea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of N. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.
Resumo:
The crosstalk between naive nucleus and maternal factors deposited in egg cytoplasm before zygotic genome activation is crucial for early development. In this study, we utilized two laboratory fishes, zebrafish (Danio rerio) and Chinese rare minnow and Chinese rare minnow (Gobiocypris rarus), to obtain mutual crossbred embroys and examine the interaction between nucleus and egg cytoplasm from different species. Although these two types of crossbred embryos originated from common nuclei, various developmental capacities were gained due to different origins of the egg cytoplasm. Using cDNA amplified fragment length polymorphism (cDNA-AFLP), We Compared transcript profiles between the mutual crossbred embryos at two developmental stages (50%- and 90%-epiholy). Three thousand cDNA fragments were generated in four cDNA pools with 64 primer combinations. All differently displayed transcript-derived fragments (TDFs) were screened by (lot blot hybridization, and the selected sequences were further analyzed by semi-quantitative RT-PCR and quantitative real-time RT-PCR. Compared with ZR embryos, 12 genes were up-regulated and 12 were down-regulated in RZ embryos. The gene fragments were sequenced and subjected to BLASTN analysis. The sequences encoded various proteins which functioned at various levels of proliferation, growth, and development. One gene (ZR6), dramatically down-regulated in RZ embryos, was chosen for loss-of-function study; the knockdown of ZR6 gave rise to the phenotype resembling that of RZ embryos. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A collection of 577 Coilia mystus was made during April 2006 and 2007 from China's Yangtze Estuary to estimate the age structure and growth patterns of the population. Examination of sectioned sagittal otoliths revealed a periodic straight/curved growth pattern. The straight zone was from April to November, and the curved zone from October to May, indicating annual periodicity. Annual periodicity was also verified by margin zone analysis. The shift from a curved-zone to the next straight-zone stanza was defined as an annulus. The fish from which the otoliths were taken were 0-5 years old. The von Bertalanffy growth function was fitted to standard length (LS)-at-age data as L-S = 215.16 (1 - e(-0.53(t+0.30))) (n = 577, r(2) = 0.81, p < 0.05). The mature females included five age classes, ages 1 and 2 accounting for 74.3% of the population. The mature males included fish aged 1 and 2, those at age 1 accounting for 86.4% of the population. Mean length was smaller, and annual growth less, for mature males than for females of comparable age. The study demonstrated that the Yangtze population of C. mystus consists of more age classes than previously thought and that the age structure of the population needs to be considered in management decisions.
Resumo:
Environmental. factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA3 on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA3 treatment. GA3 increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA3 was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-Linked immunosorbent assay (ELISA) increased in GA3 treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA3 increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Microcystins are a kind of cyclic hepatoxins produced by many species of cyanobacteria. The toxic effects of microcystins on animals and plants have been well studied. However, the reports about the effects of microcystins on microbial cells are very limited. In present paper, Escherichia coli was undertaken to determine the effect of microcystin-RR. These results suggested that microcystin-RR could prolong the growth of E. coli when exposed to high concentrations of microcystin-RR and cause the accumulation of ROS and induce the oxidant stress for a short time. The antioxidant system protects E. coli from oxidative damage.
Resumo:
A 68-day growth trial was conducted in a flow-through system to determine the effect of dietary manganese levels on growth and tissue manganese concentration of juvenile gibel carp (Carassius auratus gibelio). Seven purified diets containing 7.21, 8.46, 9.50, 10.50, 13.03, 19.72 and 22.17 mg manganese (as manganic sulfate) per kilogram diet were fed to triplicate groups of fish (initial weight 3.21 +/- 0.01 g). The results showed that dietary manganese levels did not significantly affect feed intake of the fish. Specific growth rate, feed efficiency, total hepatic superoxide dismutase activity, carcass and skeletal manganese concentration increased significantly with increased dietary manganese(P < 0.05) while condition factor decreased significantly(P < 0.05). It was concluded that dietary requirement of manganese was 13.77 mg Mn per kilogram diet. Carcass and skeletal manganese concentration could also be used to evaluate the manganese requirement. Total hepatic superoxide dismulase activity was not a sensitive indicator for dietary requirement.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.
Resumo:
An 8-week growth trial was carried out in a semi-recirculation system at 26 +/- 0.5 degrees C to investigate the optimal dietary carbohydrate-to-lipid (CHO:L) ratio for carnivorous Chinese longsnout catfish (Leiocassis longirostris Gunther). Triplicate tanks of fish were assigned to each of five isocaloric and isonitrogenous diets with different carbohydrate-to-lipid ratios (0.75, 1.48, 1.98, 2.99 and 5.07). The results showed that a higher specific growth rate (SGR) and feed rate (FR) were observed in the fish fed diet ratios of 1.98 CHO:L (P < 0.05). Overloading dietary carbohydrate (5.07 CHO:L ratio) caused skeletal malformations. Apparent digestibility of dry matter (ADC(d)) significantly increased with dietary CHO:L ratio (P < 0.05), while significantly higher apparent digestibility of protein (ADC(p)) and apparent digestibility of energy (ACD(e)) was observed only in the 1.98 CHO:L group (P < 0.05). Whole body contents of dry matter, lipid and energy significantly increased as the CHO:L ratio decreased (P < 0.05). The hepatosomatic index (HSI) was highest at 1.98 CHO:L ratio (P < 0.05). Highest dietary CHO:L ratio resulted in lower liver glycogen, liver lipid, plasma glucose and plasma triacylglycerol (P < 0.05), whereas there was no significant difference in plasma total cholesterol (P > 0.05). High dietary CHO:L ratio caused pathological changes in fish morphology and liver histology. Based on maximum growth, the optimal carbohydrate-to-lipid ratio was 1.98 for Chinese longsnout catfish.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.