961 resultados para Growth Rate
Resumo:
The role of acid secretion in regulating short-term changes in growth rate and wall extensibility was investigated in emerging first leaves of intact, water-stressed maize (Zea mays L.) seedlings. A novel approach was used to measure leaf responses to injection of water or solutions containing potential regulators of growth. Both leaf elongation and wall extensibility, as measured with a whole-plant creep extensiometer, increased dramatically within minutes of injecting water, 0.5 mm phosphate, or strong (50 mm) buffer solutions with pH ≤ 5.0 into the cell-elongation zone of water-stressed leaves. In contrast, injecting buffer solutions at pH ≥ 5.5 inhibited these fast responses. Solutions containing 0.5 mm orthovanadate or erythrosin B to inhibit wall acidification by plasma membrane H+-ATPases were also inhibitory. Thus, cell wall extensibility and leaf growth in water-stressed plants remained inhibited, despite the increased availability of (injected) water when accompanying increases in acid-induced wall loosening were prevented. However, growth was stimulated when pH 4.5 buffers were included with the vanadate injections. These findings suggest that increasing the availability of water to expanding cells in water-stressed leaves signals rapid increases in outward proton pumping by plasma membrane H+-ATPases. Resultant increases in cell wall extensibility participate in the regulation of water uptake, cell expansion, and leaf growth.
Resumo:
Growth of a zone of maize (Zea mays L.) coleoptiles and pea (Pisum sativum L.) internodes was greatly suppressed when the organ was decapitated or ringed at an upper position with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) mixed with lanolin. The transport of apically applied 3H-labeled indole-3-acetic acid (IAA) was similarly inhibited by NPA. The growth suppressed by NPA or decapitation was restored by the IAA mixed with lanolin and applied directly to the zone, and the maximal capacity to respond to IAA did not change after NPA treatment, although it declined slightly after decapitation. The growth rate at IAA saturation was greater than the rate in intact, nontreated plants. It was concluded that growth is limited and controlled by auxin supplied from the apical region. In maize coleoptiles the sensitivity to IAA increased more than 3 times when the auxin level was reduced over a few hours with NPA treatment. This result, together with our previous result that the maximal capacity to respond to IAA declines in pea internodes when the IAA level is enhanced for a few hours, indicates that the IAA concentration-response relationship is subject to relatively slow adaptive regulation by IAA itself. The spontaneous growth recovery observed in decapitated maize coleoptiles was prevented by an NPA ring placed at an upper position of the stump, supporting the view that recovery is due to regenerated auxin-producing activity. The sensitivity increase also appeared to participate in an early recovery phase, causing a growth rate greater than in intact plants.
Resumo:
The vascular cambium produces secondary xylem and phloem in plants and is responsible for wood formation in forest trees. In this study we used a microscale mass-spectrometry technique coupled with cryosectioning to visualize the radial concentration gradient of endogenous indole-3-acetic acid (IAA) across the cambial meristem and the differentiating derivatives in Scots pine (Pinus sylvestris L.) trees that had different rates of cambial growth. This approach allowed us to investigate the relationship between growth rate and the concentration of endogenous IAA in the dividing cells. We also tested the hypothesis that IAA is a positional signal in xylem development (C. Uggla, T. Moritz, G. Sandberg, B. Sundberg [1996] Proc Natl Acad Sci USA 93: 9282–9286). This idea postulates that the width of the radial concentration gradient of IAA regulates the radial number of dividing cells in the cambial meristem, which is an important component for determining cambial growth rate. The relationship between IAA concentration in the dividing cells and growth rate was poor, although the highest IAA concentration was observed in the fastest-growing cambia. The radial width of the IAA concentration gradient showed a strong correlation with cambial growth rate. The results indicate that IAA gives positional information in plants.
Resumo:
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.
Resumo:
The haloarchaeon Haloferax mediterranei is able to grow in a defined culture media not only in the presence of inorganic nitrogen salt but also with amino acid as the sole nitrogen source. Assimilatory nitrate and nitrite reductases, respectively, catalyze the first and second reactions. The genes involved in this process are nasA, which encodes nitrate reductase and is found within the operon nasABC, and nasD, which encodes nitrite reductase. These genes are subjected to transcriptional regulation, being repressed in the presence of ammonium and induced with either nitrate or nitrite. This type of regulation has also been described when the amino acids are used as nitrogen source in the minimal media. Furthermore, it has been observed that the microorganism growth depends on nitrogen source, obtaining the lowest growth rate in the presence of nitrate and aspartate. In this paper, we present the results of a comparative study of microorganism growth and transcriptomic analysis of the operon nasABC and gene nasD in different nitrogen sources. The results are the first ever produced in relation to amino acids as nitrogen sources within the Halobacteriaceae family.
Resumo:
This Working Document provides an estimate of China’s impact on the growth rate of resource-rich countries since its WTO accession in December 2001. The authors’ empirical approach follows the logic of the differences-in-differences estimator. In addition to temporal variation arising from the WTO accession, which they argue was exogenous to other countries’ growth trajectories, the authors exploit spatial variation arising from differences in natural resource wealth. In this way they can compare changes in economic growth in the pre- and post-accession periods between countries that benefited from the surge in demand for industrial commodities brought about by China’s WTO accession and countries that were less able to do so. They find that that roughly one-tenth of the average annual post-accession growth in resource-rich countries was due to China’s increased appetite for commodities. The authors use this finding to inform the debate about what will happen to economic growth in resource-rich countries as China rebalances and its demand for commodities weakens.
Resumo:
In the long term, productivity and especially productivity growth are necessary conditions for the survival of a farm. This paper focuses on the technology choice of a dairy farm, i.e. the choice between a conventional and an automatic milking system. Its aim is to reveal the extent to which economic rationality explains investing in new technology. The adoption of robotics is further linked to farm productivity to show how capital-intensive technology has affected the overall productivity of milk production. The empirical analysis applies a probit model and an extended Cobb-Douglas-type production function to a Finnish farm-level dataset for the years 2000–10. The results show that very few economic factors on a dairy farm or in its economic environment can be identified to affect the switch to automatic milking. Existing machinery capital and investment allowances are among the significant factors. The results also indicate that the probability of investing in robotics responds elastically to a change in investment aids: an increase of 1% in aid would generate an increase of 2% in the probability of investing. Despite the presence of non-economic incentives, the switch to robotic milking is proven to promote productivity development on dairy farms. No productivity growth is observed on farms that keep conventional milking systems, whereas farms with robotic milking have a growth rate of 8.1% per year. The mean rate for farms that switch to robotic milking is 7.0% per year. The results show great progress in productivity growth, with the average of the sector at around 2% per year during the past two decades. In conclusion, investments in new technology as well as investment aids to boost investments are needed in low-productivity areas where investments in new technology still have great potential to increase productivity, and thus profitability and competitiveness, in the long run.
Resumo:
The physiological condition of larval Antarctic krill was investigated during austral autumn 2004 and winter 2006 in the Lazarev Sea, to provide better understanding of a critical period of their life cycle. The condition of larvae was quantified in both seasons by determining their body length (BL), dry mass (DM), elemental- and biochemical composition, as well as stomach content analysis, and rates of metabolism and growth. Overall the larvae in autumn were in better condition under the ice than in open water, and for those under the ice there was a decrease in condition from autumn to winter. Thus growth rates of furcilia larvae in open water in autumn were similar to winter values under the ice (mean 0.008 mm/d), whereas autumn, under ice values were higher: 0.015 mm/d. Equivalent larval stages had up to 30% lower BL and 70% lower DM in winter compared to autumn, with mean oxygen consumption 44% lower (0.54 µl O2 DM/h). However, their ammonium excretion rates doubled (from 0.03-0.06 µg NH4 DM/h) so their mean O:N ratio was 46 in autumn and 15 in winter. Thus differing metabolic substrates were used between autumn and winter, suggesting a flexible overwintering strategy, as suggested for adults. The larvae were eating small copepods (Oithona spp.) and/or protozoans as well as autotrophic food under the ice. However, pelagic Chlorophyll a (Chl a) was a good predictor for growth in both seasons. The physics (current speed/ice topography) probably has a critical part to play in whether larval krill can exploit the food that may be associated with sea ice or be advected away from such suitable feeding habitat.
Resumo:
Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.
Resumo:
Growth rates of nine ferromanganese nodules collected from the Southeast Pacific were estimated using the alpha radiogpaphic technigue. Growth rates range from 1 to 16 mm per million years. In three nodules measurements were made on two opposite sides; two of them showed no growth in one of measured directions during the last 300 ky, whereas in the third nodule growth rates on the opposite sides differ by factor 2. Average sedimentation rate of deposits underlying the nodules estimated by the radiocarbon and excess 230Th methods, were 4 mm/1000 years with rather minor variations. Difference between sedimentation rates and nodule growth rates is caused by activity of benthic fauna, as suggested by inversion of radiocarbon dates with depth.