937 resultados para Grass pollen
Resumo:
The pollen, spore and organic walled dinoflagelletas cyst associations of two marine sediment cores from the Java Sea off the mouths of Jelai River (South Kalimantan) and Solo River (East Java) reflect environment and vegetation changes during the last ca 3500 years in the region. A decline in primary forest taxa (e.g. Agathis, Allophylus, Dacrycarpus, Dacrydium, Dipterocarpaceae, Phyllocladus, and Podocarpus) suggest that the major change in vegetation is caused by the forest canopy opening that can be related to human activity. The successively increase of pollen of pioneer canopy and herb taxa (e.g. Acalypha, Ficus, Macaranga/Mallotus, Trema, Pandanus) indicate the development of a secondary vegetation. In Java these changes started much earlier (ca at 2950 cal yr BP) then in Kalimantan (ca at 910 cal yr BP) and seem to be more severe. Changes in the marine realm, reflected by the dinoflagellate cyst association correspond to changes in vegetation on land. They reflect a gradual change from relatively well ventilated to more hypoxic bottom/pore water conditions in a more eutrophic environment. Near the coast of Java, the shift of the water trophic status took place between ca 820 and 500 cal yrs BP, while near the coast of Kalimantan it occurred as late as at the beginning of the 20th century. We observe an increasing amount of the cyst of Polykrikos schwarzii, cyst of P. kofoidii, Lingulodinium machaerophorum, Nematosphaeropsis labyrinthus and Selenopemphix nephroides at times of secondary vegetation development on land, suggesting that these species react strongly on human induced changes in the marine environment, probably related to increased pollution and eutrophication.
Resumo:
Some years ago a fossil lake basin was found in the northeastern part of the former Rhine-pied- mont-glacier, situated between the endmoraine system ofthe elassical Riß- andWürm glacia- tions, respectively. The lacustrine sediments contain the pollenflora ofthe Eemian interglacial. They are intensively thrusted. These sediments are eovered by a loam-layer, rieh in elasts. The thickness of this loam-layer varies between at least 170 and 400 cm. It consists in its major part of loess-loam and solifluction material. Yet just on top of the lake sediments mentioned an in- tensively compressed loam, characterized by quarzgrains with all features of glacially pressed material, together with striated elasts is met with. It strongly resembles atil!. Ifthis is true, the stratigraphie division ofthe last glaciation strongly deviates from the hitherto accepted scheme, incorporating an early glacier advance, long before the elassical young-endmoraine systems of the Würm glaciation were formed.
Resumo:
A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.
Resumo:
A palynological investigation of a Holocene profile from Lake Voulkaria, western Greece, was carried out as a contribution to the environmental history of the coastal area of northwestern Acarnania and the Classical city of Palairos. It shows that deciduous oaks dominated the natural vegetation of the area throughout the Holocene. Until ca. 7000 B.C. Pistacia occurred abundantly, while other evergreen woody taxa were rare. At ca. 6300 B.C. an expansion of Carpinus orientalis/Ostrya can be observed. Around ca. 5300 B.C. spreading of Erica indicates a change to a drier climate and/or first human impact. Since ca. 3500 B.C. an increase of evergreen shrubs now clearly indicates land-use. The foundation of the Classical city of Palairos led to a temporary expansion of Phillyrea maquis. Within this period, molluscs of brackish water indicate the use of the lake as a harbour after the construction of a connection to the sea. The deciduous Quercus woodland recovered when human impact decreased in the area, and lasted until modern times.
Resumo:
Palynological investigations of sediments from northern Bavaria (Rhön, Grabfeld, Lange Berge) reveal the Late Glacial and Postglacial history of the regional vegetation. The older sedirnents were found in the Rhön (Schwarzes Moor) and date back into the Bölling Period. At the end of that period pine spread into the Grabfeld. In both areas Lacher Tuff has been found. A radiocarbon date of 10,300 BP was found for the Late Glacial - Postglacial transition and one of 9300 BP for the Preboreal - Boreal transition. Hazel reached its highest values in the Rhön around 7,400 BP. During the Atlanticum a deciduous mixed oak forest covered the Rhön and Grabfeld regions. Beech dominated since the Subatlanticum. In the Lange Berge region, however, a mixed forest with Fagus, Picea, Pinus and Abies developed. In the Rhön first anthropogenic influence was found during the Latene Period. The boundary between zone IX and X has been dated at 820 A.D., and the start of extensive forest clearances at 1000 A. D. A culmination of landuse was found for the Medieval Period. At the end of that period however the Rhön was deserted. New forest clearances started around 1500 A.D., but were interrupted by the 'Thirty Years War'. Afterwards the Rhön got its present appearance.
Resumo:
Three sediment cores from the Bragança Peninsula located in the coastal region in the north-eastern portion of Pará State have been studied by pollen analysis to reconstruct Holocene environmental changes and dynamics of the mangrove ecosystem. The cores were taken from an Avicennia forest (Bosque de Avicennia (BDA)), a salt marsh area (Campo Salgado (CS)) and a Rhizophora dominated area (Furo do Chato). Pollen traps were installed in five different areas of the peninsula to study modern pollen deposition. Nine accelerator mass spectrometry radiocarbon dates provide time control and show that sediment deposits accumulated relatively undisturbed. Mangrove vegetation started to develop at different times at the three sites: at 5120 14C yr BP at the CS site, at 2170 14C yr BP at the BDA site and at 1440 14C yr BP at the FDC site. Since mid Holocene times, the mangroves covered even the most elevated area on the peninsula, which is today a salt marsh, suggesting somewhat higher relative sea-levels. The pollen concentration in relatively undisturbed deposits seems to be an indicator for the frequency of inundation. The tidal inundation frequency decreased, probably related to lower sea-levels, during the late Holocene around 1770 14C yr BP at BDA, around 910 14C yr BP at FDC and around 750 14C yr BP at CS. The change from a mangrove ecosystem to a salt marsh on the higher elevation, around 420 14C yr BP is probably natural and not due to an anthropogenic impact. Modern pollen rain from different mangrove types show different ratios between Rhizophora and Avicennia pollen, which can be used to reconstruct past composition of the mangrove. In spite of bioturbation and especially tidal inundation, which change the local pollen deposition within the mangrove zone, past mangrove dynamics can be reconstructed. The pollen record for BDA indicates a mixed Rhizophora/Avicennia mangrove vegetation between 2170 and 1770 14C yr BP. Later Rhizophora trees became more frequent and since ca. 200 14C yr BP Avicennia dominated in the forest.