979 resultados para Glufosinate-ammonium
Resumo:
The kinetics of reactive uptake of gaseous N2O5 on sub-micron aerosol particles composed of aqueous ammonium sulfate, ammonium hydrogensulfate and sodium nitrate has been investigated. Uptake was measured in a laminar flow reactor, coupled with a differential mobility analyser (DMA) to obtain the aerosol size distribution, with N2O5 detection using NO chemiluminescence. FTIR spectroscopy was used to obtain information about the composition and water content of the aerosol particles under the conditions used in the kinetic measurements. The aerosols were generated by the nebulisation of aqueous salt solutions. The uptake coefficient on the sulfate salts was in the range [gamma]=0.0015 to 0.033 depending on temperature, humidity and phase of the aerosol. On sodium nitrate aerosols the values were much lower, [gamma]<0.001, confirming the inhibition of N2O5 hydrolysis by nitrate ions. At high humidity (>50% r.h.) the uptake coefficient on liquid sulfate aerosols is independent of water content, but at lower humidity, especially below the efflorescence point, the reactivity of the aerosol declines, correlating with the lower water content. The lower uptake rate on solid aerosols may be due to limitations imposed by the liquid volume in the particles. Uptake on sulfate aerosols showed a negative temperature dependence at T>290 K but no significant temperature dependence at lower temperatures. The results are generally consistent with previous models of N2O5 hydrolysis where the reactive intermediate is NO2+ produced by autoionisation of nitrogen pentoxide in the condensed phase.
Resumo:
A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM). Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models. The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) is a key ionization technique in mass spectrometry (MS) for the analysis of labile macromolecules. An important area of study and improvements in relation to MALDI and its application in high-sensitivity MS is that of matrix design and sample preparation. Recently, 4-chloro-alpha-cyanocinnamic acid (ClCCA) has been introduced as a new rationally designed matrix and reported to provide an improved analytical performance as demonstrated by an increase in sequence coverage of protein digests obtained by peptide mass mapping (PMM) (Jaskolla, T. W.; et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12200-12205). This new matrix shows the potential to be a superior alternative to the commonly used and highly successful alpha-cyano-4-hydroxycinnamic acid (CHCA). We have taken this design one step further by developing and optimizing an ionic liquid matrix (ILM) and liquid support matrix (LSM) using ClCCA as the principle chromophore and MALDI matrix compound. These new liquid matrices possess greater sample homogeneity and a simpler morphology. The data obtained from our studies show improved sequence coverage for BSA digests compared to the traditional CHCA crystalline matrix and for the ClCCA-containing ILM a similar performance to the ClCCA crystalline matrix down to 1 fmol of BSA digest prepared in a single MALDI sample droplet with current sensitivity levels in the attomole range. The LSMs show a high tolerance to contamination such as ammonium bicarbonate, a commonly used buffering agent.
Resumo:
The effects of applying nitrogen (30 or 40 kg N/ha) to wheat crops at and after anthesis, after 200 kg N/ha had already been applied to the soil during stem extension, were studied in field experiments comprising complete factorial combinations of different cultivars, fungicide applications and nitrogen treatments. Actual recoveries of late-season fertilizer nitrogen (LSFN), as indicated by N-15 studies, interacted with cultivar and fungicide treatment, and depended on nitrogen source (Urea applied as a solution to the foliage, or as ammonium nitrate applied to the soil) and year. These interactions, however, were not reflected in apparent fertilizer recoveries ((N in grain with LSFN - N in grain without LSFN)/N applied as LSFN), or in the crude protein concentration. Apparent fertilizer recovery was always lower than actual recoveries, and declined during grain filling. Fertilizer treatments with higher actual fertilizer recoveries were associated with lower net renlobilisation of non-LSFN (net remobilised N = N in above ground crop at anthesis - N in non-grain, above ground crop at harvest). LSFN also increased mineral nitrogen in the soil at harvest even when applied as a solution to the foliage. These effects are discussed in relation to potential grain N demand. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Rhizobium leguminosarum bv. viciae 3841 contains six putative quaternary ammonium transporters (Qat), of the ABC family. Qat6 was strongly induced by hyperosmosis although the solute transported was not identified. All six systems were induced by the quaternary amines choline and glycine betaine. It was confirmed by microarray analysis of the genome that pRL100079-83 (qat6) is the most strongly upregulated transport system under osmotic stress, although other transporters and 104 genes are more than threefold upregulated. A range of quaternary ammonium compounds were tested but all failed to improve growth of strain 3841 under hyperosmotic stress. One Qat system (gbcXWV) was induced 20-fold by glycine betaine and choline and a Tn5::gbcW mutant was severely impaired for both transport and growth on these compounds, demonstrating that it is the principal system for their use as carbon and nitrogen sources. It transports glycine betaine and choline with a high affinity (apparent K-m, 168 and 294 nM, respectively).
Resumo:
The grapevine moth Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae) is a key pest of grapevines in Greece. As part of a broader study on integrated pest management, the effects were investigated of different cultural methods on the establishment and survival of L. botrana, specifically: application of different nitrogen levels (30 and 100 units of ammonium sulfate or 70 units of Agrobiosol); summer leaf and shoot pruning; application of growth regulators (Regalis, probexadione-calcium; or Falgro, gibberellic acid). There were significant differences among the three levels of N application. The lowest L. botrana infestation rates were found in plots treated with 30 units of (NH4)(2)SO4 and plots that received some summer pruning. Following the application of plant growth regulators, the lowest L. botrana infestation levels occurred in the plots treated with Regalis or Falgro at the manufacturers' recommended concentrations. On vines where growth regulators had been applied, the clusters had fewer berries than those not treated with growth regulators.
Resumo:
Bacteria have evolved a wide variety of metabolic strategies to cope with varied environments. Some are specialists and only able to survive in restricted environments; others are generalists and able to cope with diverse environmental conditions. Rhizolbia (e.g. Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium species) can survive and compete for nutrients in soil and the plant rhizosphere but can also form a beneficial symbiosis with legumes in a highly specialized plant cell environment. Inside the legume-root nodule, the bacteria (bacteroids) reduce dinitrogen to ammonium, which is secreted to the plant in exchange for a carbon and energy source. A new and challenging aspect of nodule physiology is that nitrogen fixation requires the cycling of amino acids between the bacteroid and plant. This review aims to summarize the metabolic plasticity of rhizobia and the importance of amino acid cycling.
Resumo:
The acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) complement from dormant hazel (Corylus avellana L.) seeds was found to exhibit significant electrophoretic heterogeneity partially attributable to the presence of distinct molecular forms. In axiferous tissue, total acid phosphatase activity increased in a biphasic fashion during chilling, a treatment necessary to alleviate seed dormancy. Three acid phosphatase isozymes were isolated from cotyledons of dormant hazel seeds by successive ammonium sulphate precipitation, size-exclusion, Concanavalin A affinity, cation- and anion-exchange chromatographies resulting in 75-, 389- and 191-fold purification (APase1, APase2, APase3, respectively). The three glycosylated isoforms were isolated to catalytic homogeneity as determined by electrophoretic, kinetic and heat-inactivation studies. The native acid phosphatase complement of hazel seeds had an apparent Mr of 81.5±3.5 kDa as estimated by size-exclusion chromatography, while the determined pI values were 5.1 (APase1), 6.9 (APase2) and 7.3 (APase3). The optimum pH for p-nitrophenyl phosphate hydrolysis was pH 3 (APase1), pH 5.6 (APase2) and pH 6 (APase3). The hazel isozymes hydrolysed a variety of phosphorylated substrates in a non-specific manner, exhibiting low Km and the highest specificity constant (Vmax/Km) for pyrophosphate. They were not primary phytases since they could not initiate phytic acid hydrolysis, while APase2 and APase3 had significant phospho-tyrosine phosphatase activity. Inorganic phosphate was a competitive inhibitor, while activity was significantly impaired in the presence of vanadate and fluoride.
Resumo:
The biological reduction of atmospheric N-2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume rhizobia symbioses(1), which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids(2,3). It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.
Resumo:
A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
Two 28-membered octaazamacrocycles, [28]py(2)N(6) and Me-2[28]py(2)N(6), have been synthesized. The protonation constants of the N-methyl. derivative and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 25degreesC in 0.10 mol dm(-3) KNO3. The high overall basicity of Me-2[28]py(2)N(6) is ascribed to the weaker repulsion between protonated contiguous charged ammonium sites separated by propyl chains. These studies together with NMR, UV-vis and EPR spectroscopies indicated the presence of mono- and di-nuclear species, The single crystal structure of the complex [Ni-2([28]py(2)N(6))(H2O)(4)]Cl-4.3H(2)O was determined, and showed each nickel centre in a distorted octahedral co-ordination environment. The nickel centres are held within the macrocycle at a large distance of 6.991(g) Angstrom from each other. The formation of mononuclear complexes was evaluated theoretically via molecular mechanics (MM) and molecular dynamics (MD) calculations and showed that these large macrocycles have sufficient flexibility to encapsulate metal ions with different stereo-electronic sizes. Structures for small and large metal ions are proposed.
Resumo:
Tungsten carbide/oxide particles have been prepared by the gel precipitation of tungstic acid in the presence of an organic gelling agent [10% ammonium poly(acrylic acid) in water, supplied by Ciba Specialty Chemicals]. The feed solution; a homogeneous mixture of sodium tungstate and ammonium poly(acrylic acid) in water, was dropped from a 1-mm jet into hydrochloric acid saturated hexanol/concentrated hydrochloric acid to give particles of a mixture of tungstic acid and poly(acrylic acid), which, after drying in air at 100 degrees C and heating to 900 degrees C in argon for 2 h, followed by heating in carbon dioxide for a further 2 h and cooling, gives a mixture of WO, WC, and a trace of NaxWO3, with the carbon for the formation of WC being provided by the thermal carbonization of poly(acrylic acid). The pyrolyzed product is friable and easily broken down in a pestle and mortar to a fine powder or by ultrasonics, in water, to form a stable colloid. The temperature of carbide formation by this process is significantly lower (900 degrees C) than that reported for the commercial preparation of tungsten carbide, typically > 1400 degrees C. In addition, the need for prolonged grinding of the constituents is obviated because the reacting moieties are already in intimate contact on a molecular basis. X-ray diffraction, particle sizing, transmission electron microscopy, surface area, and pore size distribution studies have been carried out, and possible uses are suggested. A flow diagram for the process is described.
Resumo:
Carbons have been prepared by the low-temperature pyrolysis, under argon, of a number of long-chain polymers. We have found that the resistivity (Omega cm(-1)) varies considerably with the temperature of pyrolysis; thus, for ammonium polyacrylate, the resistivity of that pyrolyzed at 600 degrees C is 9.7 x 10(4) Omega cm(-1) whereas that pyrolyzed at 1000 degrees C is ca. 3 Omega cm(-1). A similar situation arises for the other polymers studied (including radiolyzed cross-linked polyacrylamide). All those pyrolyzed at 600 degrees C had a resistivity of > 1 x 10(6) Omega cm(-1), whereas those pyrolyzed at 1000 degrees C had a resistivity of ca. 3-5 Omega cm(-1). A notable exception was that of unirradiated polyacrylamide, where the resistivity remained at > 1 x 10(6) Omega cm(-1) over the range of temperatures studied. The decrease of resistivity with increase of temperature of pyrolysis has been related to the formation of glassy carbon. Nanoparticles (4 nm) of tetragonal zirconia were formed when zirconium polyacrylate was pyrolyzed under similar conditions.
Resumo:
Reaction of single crystals of benzoic and trans-cinnamic acids with 200 Torr pressure of ammonia gas in a sealed glass bulb at 20 degrees C generates the corresponding ammonium salts; there is no sign of any 1:2 adduct as has been reported previously for related systems. Isotopic substitution using ND3 has been used to aid identification of the products. Adipic acid likewise reacts with NH3 gas to form a product in which ammonium salts are formed at both carboxylic acid groups. Reaction of 0.5 Torr pressure of NO2 gas with single crystals of 9-methylanthracene and 9-anthracenemethanol in a flow system generates nitrated products where the nitro group appears to be attached at the 10-position, i.e. the position trans to the methyl or methoxy substituent on the central ring. Isotopic substitution using (NO2)-N-15 has been used to confirm the identity of the bands arising from the coordinated NO2 group. The products formed when single crystals of hydantoin are reacted with NO2 gas under similar conditions depend on the temperature of the reaction. At 20 degrees C, a nitrated product is formed, but at 65 degrees C this gives way to a product containing no nitro groups. The findings show the general applicability of infrared microspectroscopy to a study of gas-solid reactions of organic single crystals. (c) 2005 Elsevier B.V. All rights reserved.