945 resultados para Ghrelin, Peptides, Crypteins, Splicing, ncRNA
Resumo:
The calcitonin family of peptides comprises calcitonin, amylin two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.
Resumo:
1. Structure-activity relationships for the binding of human α-calcitonin gene-related peptide 8-37 (hαCGRP8-37) have been investigated at the CGRP receptors expressed by human SK-N-MC (neuroblastoma) and Col 29 (colonic epithelia) cells by radioligand binding assays and functional assays (hαCGRP stimulation of adenylate cyclase). 2. On SK-N-MC cells the potency order was hαCGRP8-37 > hαCGRP19-37 = AC187 > rat amylin8-37 > hα[Tyr0]-CGRP28-37 (apparent pKBS of 7.49 ± 0.25, 5.89 ± 0.20, 6.18 ± 0.19, 5.85 ± 0.19 and 5.25 ± 0.07). The SK-N-MC receptor appeared CGRP1-like. 3. On Col 29 cells, only hαCGRP8-37 of the above compounds was able to antagonize the actions of hαCGRP (apparent pKB = 6.48 ± 0.28). Its receptor appeared CGRP2-like. 4. hα[Ala11,18]-CGRP8-37, where the amphipathic nature of the N-terminal α-helix has been reduced, bound to SK-N-MC cells a 100 fold less strongly than hαCGRP8-37. 5. On SK-N-MC cells, hαCGRP(8-18, 28-37) (M433) and mastoparan-hαCGRP28-37 (M432) had apparent pKBS of 6.64 ± 0.16 and 6.42 ± 0.26, suggesting that residues 19-27 play a minor role in binding. The physico-chemical properties of residues 8-18 may be more important than any specific side-chain interactions. 6. M433 was almost as potent as hαCGRP8-37 on Col 29 cells (apparent pKB = 6.17 ± 0.20). Other antagonists were inactive.
Resumo:
In coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31-43 and p57-68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated.
Resumo:
Imaging using MS has the potential to deliver highly parallel, multiplexed data on the specific localization of molecular ions in tissue samples directly, and to measure and map the variations of these ions during development and disease progression or treatment. There is an intrinsic potential to be able to identify the biomarkers in the same experiment, or by relatively simple extension of the technique. Unlike many other imaging techniques, no a priori knowledge of the markers being sought is necessary. This review concentrates on the use of MALDI-MS for MS imaging (MSI) of proteins and peptides, with an emphasis on mammalian tissue. We discuss the methodologies used, their potential limitations, overall experimental considerations and progress that has been made towards establishing MALDI-MSI as a routine technique for the spatially resolved measurement of peptides and proteins. As well as determining the local abundance of individual molecular ions, there is the potential to determine their identity within the same experiment using relatively simple extensions of the basic techniques. In this way MSI offers an important opportunity for biomarker discovery and identification.
Resumo:
Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity.