975 resultados para Geometria-Tractats, manuals, etc.
Resumo:
Neste trabalho são investigados problemas formulados em geometria cilíndrica na área da dinâmica de gases rarefeitos bem como na área de transferência radiativa. Com relação á dinâmica de gases rarefeitos, primeiramente são abordadas duas formas diferenciadas de se avaliar numericamente as funções de Chapmann-Enskog e de Burnett, necessárias na composição de soluções gerais nessa geometria. Em seguida é apresentada a derivação de uma equação integral baseada no modelo BGK para descrever o fluxo de um gás rarefeito em um tubo cilíndrico. Problemas relacionados á transferência radiativa, incluindo o caso não-linear acoplado radiação-condução, são solucionados com a aplicação de uma versão reformulada do método de ordenadas discretas, sendo que resultados numéricos relevantes a estes problemas são também apresentados.
Resumo:
Este trabalho apresenta simulações físicas de correntes de densidade não conservativas em canal bidimensional e tridimensional. Primeiramente, foram desenvolvidas a seleção e caracterização de materiais granulares, bem como a classificação de tamanhos de grãos adequados capazes de simular tais correntes. Foram desenvolvidas também, metodologias de ensaios, abordando os detalhes como a preparação de materiais, equipamentos e instalações. Como resultados foram selecionados cinco materiais para as simulações, a areia (0,125mm a 0,063mm); os calcários B e C (0,125mm a 0,063mm) e os carvões 205 e carvão 207 (0,354mm a 0,063mm). Através de ensaios por fluxo contínuo de material, caracterizado por uma injeção de mistura durante um período de tempo, foram estudados as características geométricas, dinâmicas e os padrões de deposição destas correntes. Nestes ensaios foram variados o material granular e seu tamanho de grão utilizado na mistura e a concentração da mistura. Observou-se que: a velocidade da corrente aumenta à medida que a massa específica/concentração da mistura aumenta; que à medida que o tamanho do grão diminui, para um mesmo material com a mesma massa específica na mistura, a velocidade aumenta; a altura da cabeça da corrente aumenta à medida que a massa específica/concentração da mistura diminui; a distribuição dos volumes de depósitos apresentou uma tendência geral, com acúmulo de material, da ordem de 90%, nas regiões mais proximais do canal (0-75cm) e acúmulo de material, da ordem de 5%, canal nas regiões mais distais do canal (150-250cm). A distribuição dos grãos indica que o tamanho dos grãos vai diminuindo com a distância, estando as frações maiores (correspondentes a areia fina) presentes nas zonas mais proximais do canal (até 50cm) e com os grãos mais finos chegando até as regiões mais distais do canal (250cm). Foi avaliada, também, a influência da vazão inicial e do volume total de material sobre o desenvolvimento e depósitos das correntes de densidade não conservativas. As características medidas foram a evolução e as velocidades da corrente, além da espessura, granulometria e formas de fundo dos depósitos gerados. Como resultados foi verificado que a velocidade de avanço, espessuras, formas de fundo e distribuição granulométricas do material estão intimamente mais ligada à vazão de entrada do que ao volume total. Nota-se que, a vazão condiciona a tendência geral da evolução da corrente (padrão de variação da velocidade e da deposição) e as formas de fundo, enquanto que o volume de material injetado é responsável apenas pela magnitude dessas variações.
Resumo:
Este trabalho apresenta uma sistemática para realizar a otimização numérica de pré-formas e de matrizes em problemas de forjamento axissimétricos e em estado plano de deformações. Para este fim, desenvolveu-se um código computacional composto basicamente de três módulos: módulo de pré-processamento, módulo de análise e módulo de otimização. Cada um destes foi elaborado acrescentando rotinas em programas comerciais ou acadêmicos disponíveis no GMAp e no CEMACOM. Um programa gerenciador foi desenvolvido para controlar os módulos citados no processo de otimização. A abordagem proposta apresenta uma nova função objetivo a minimizar, a qual está baseada em uma operação booleana XOR (exclusive or) sobre os dois polígonos planos que representam a geometria desejada para o componente e a obtida na simulação, respectivamente. Esta abordagem visa eliminar possíveis problemas geométricos associados com as funções objetivo comumente utilizadas em pesquisas correlatas. O trabalho emprega análise de sensibilidade numérica, via método das diferenças finitas. As dificuldades associadas a esta técnica são estudadas e dois pontos são identificados como limitadores da abordagem para problemas de conformação mecânica (grandes deformações elastoplásticas com contato friccional): baixa eficiência e contaminação dos gradientes na presença de remalhamentos. Um novo procedimento de diferenças finitas é desenvolvido, o qual elimina as dificuldades citadas, possibilitando a sua aplicação em problemas quaisquer, com características competitivas com as da abordagem analítica Malhas não estruturadas são tratadas mediante suavizações Laplacianas, mantendo as suas topologias. No caso de otimização de pré-formas, o contorno do componente a otimizar é parametrizado por B-Splines cujos pontos de controle são adotados como variáveis de projeto. Por outro lado, no caso de otimização de matrizes, a parametrização é realizada em termos de segmentos de reta e arcos de circunferências. As variáveis de projeto adotadas são, então, as coordenadas das extremidades das retas, os raios e centros dos arcos, etc. A sistemática é fechada pela aplicação dos algoritmos de programação matemática de Krister Svanberg (Método das Assíntotas Móveis Globalmente Convergente) e de Klaus Schittkowski (Programação Quadrática Sequencial – NLPQLP). Resultados numéricos são apresentados mostrando a evolução das implementações adotadas e o ganho de eficiência obtido.
Resumo:
O método LTSN tem sido utilizado na resolução de uma classe abrangente de problemas de transporte de partículas neutras que são reduzidos a um sistema linear algébrico depois da aplicação da transformada de Laplace. Na maioria dos casos estudados os autovalores associados são reais e simétricos. Para o problema de criticalidade os autovalores associados são reais ou imaginários puros e simétricos, e para o o problema de multigrupo podem aparecer autovalores complexos. O objetivo deste trabalho consiste na generalização da formulação LTSN para problemas de transporte com autovalores complexos. Por esse motivo é focada a solução de um problema radiativo de transporte com polarização em uma placa plana. A solução apresentada fundamenta-se na aplicação da transformada de Laplace ao conjunto de equações SN dos problemas resultantes da decomposição da equação de transferência radiativa com polarização em série de Fourier, seguindo o procedimento de Chandrasekhar. Esse procedimento gera 2L + 2 sistemas lineares de ordem 4N dependentes do parâmetro complexo "s". Aqui, L é o grau de anisotropia e N a ordem de quadratura. A solução desse sistema simbólico é obtida através da aplicação da transformada inversa de Laplace depois da inversão da matriz simbólica pelo método da diagonalização. Para a obtenção das constantes de integração é assumido que os componentes do vetor de Stokes são reais e as matrizes dos autovalores e autovetores são separadas em suas partes real e imaginária. A solução LTSN para autovalores complexos é validada através da comparação da solução para uma placa com espessura unitária, grau de anisotropia L = 13, albedo de espalhamento simples $ = 0:99, coe ciente de re exão de Lambert ¸0 = 0:1 e N = 150, segundo dados da literatura consultada.
Resumo:
Este texto tem como objetivo básico realizar o arriscado exercício de pensar como, no Brasil das últimas décadas, desenvolveram-se o que se irá chamar de "estudos políticos". Tal designação, passível de muitas críticas e desconfianças, é reveladora da grande dificuldade em delinear o campo dos trabalhos cobertos pela reflexão, uma vez que trata-se, fundamentalmente, de situar as questões e relações, ao mesmo tempo competitivas e complementares, de uma produção que, tendo como objeto "temas políticos", pode assumir contornos teórico-metodológicos mais próximos ou distantes da história, da ciência política ou, também, de outras ciências sociais.
Resumo:
Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.
Resumo:
Trata dos fatores formadores e influenciadores da Imagem em seus vários aspectos: imagem de produtos, de organizações, de pessoas, etc ... Expõe a relevância do conceito de Imagem no processo de percepção humana, particularmente no contexto da ação mercadológica. Conceitua a Imagem, diferenciando-a de conceitos próximos. Apresenta a Teoria do Comportamento do Consumidor. Discute processos e programas de formação da alteração da Imagem. Relata casos de empresas e pessoas envolvidas em projetos de formação ou alteração da Imagem.
Resumo:
O presente estudo tem por objectivo compreender como é que os alunos se apropriam dos conceitos da Geometria do sétimo ano de escolaridade quando usam materiais manipuláveis. Com este propósito formularam-se as seguintes questões: (1) Quais os processos matemáticos utilizados pelos alunos ao realizarem tarefas recorrendo aos materiais manipuláveis? (2) Como é que os materiais manipuláveis promovem o desenvolvimento dos conhecimentos geométricos? (3) Qual o contributo dado pelos materiais manipuláveis no desenvolvimento de determinadas competências matemáticas nos alunos? (4) Qual é o desempenho matemático dos alunos ao trabalharem, cooperativamente, em tarefas com recurso a materiais manipuláveis? Tendo em vista os objectivos do estudo, analisou-se o trabalho de uma turma do sétimo ano de escolaridade em torno da realização de dez tarefas que compreendiam o uso de diferentes materiais manipuláveis e, dentro da turma, estudaram-se dois grupos em particular. A investigação segue uma metodologia qualitativa de natureza interpretativa. Os dados foram recolhidos pela investigadora através de registos escritos feitos a partir da observação directa realizada nas aulas, de registos escritos e audiovisuais do trabalho dos alunos, e de um questionário aplicado aos mesmos no final da experiência. A análise dos dados e a disposição das conclusões foram estabelecidas conforme o papel dos materiais manipuláveis no aperfeiçoamento de processos matemáticos, na aprendizagem de conhecimentos geométricos, no desenvolvimento de competências matemáticas e no desempenho matemático dos alunos. Das conclusões que emergem do estudo destacam-se: - A realização das tarefas por parte dos alunos, com recurso aos materiais manipuláveis, parece ter contribuído para o aperfeiçoamento de alguns processos matemáticos, o que parece evidenciar que desenvolveram a aptidão na sua apropriação e aplicabilidade. O facto de poderem tocar, mover ou manipular estes materiais, enfatizam a forma como aprendem Matemática valorizando os processos utilizados nas suas experiências de construção da aprendizagem. As tarefas cujo enunciado apelou directamente à investigação e à descoberta foram aquelas que desencadearam a utilização de um maior número de processos matemáticos. - Os vários conceitos geométricos foram apreendidos de forma significativa pelos alunos, pois a aprendizagem foi feita a partir da sua própria experiência. A utilização de materiais manipuláveis facilitou as interacções entre os alunos, originando mais momentos de partilha e discussão dos seus raciocínios e processos. - Os alunos trabalharam ao nível do desenvolvimento de competências principalmente, competência de pensamento matemático, pois contactaram e dominaram modos matemáticos de pensamento; competência de raciocínio matemático, que implica estar apto a raciocinar matematicamente; competência em instrumentos e acessórios, que implica estar apto a fazer uso e estabelecer relações com instrumentos e acessórios matemáticos; competência de comunicação que envolve estar apto a comunicar em, com e sobre a matemática e competência de cooperação. - Os dados parecem sugerir que houve uma evolução no desempenho dos alunos a vários níveis, nomeadamente: no trabalho cooperativo, no envolvimento da tarefa e nas interacções estabelecidas.
Resumo:
Pedro Manuel Augusto