958 resultados para Geology, Stratigraphic -- Jurassic -- Catalonia -- Bac Grillera, Mountains
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.
Resumo:
Cretaceous and Jurassic sediments 435 m thick were drilled at Site 511, in the basin province of the Falkland Plateau, during DSDP Leg 71. The calcareous Unit 3 and the clayey zeolitic Unit 4, both of Senonian age, revealed poorly preserved organic matter indicative of oxidized environments. The same characteristics prevailed for the clayey Unit 5 of Turonian to Albian age. Strictly reducing environments existed for black facies along Unit 6 of earliest Albian to Late Jurassic age and allowed the preservation of a rich organic material that is marine in origin. Besides the transition from reducing conditions in Unit 6 to oxidizing conditions in Unit 5, there are 20 meters of sediments in Cores 56-58 where detrital, nonmarine and then marine organic matter, both implying more or less reducing environments, are interlain by poorly preserved material. In the black shales of the bottom Cores 69 and 70, some nonmarine detritus is mixed with the predominantly marine organic material. An immature stage of evolution can be assigned to all of the samples studied. The chapter also undertakes a comparison with contemporaneous lithologies at adjacent Sites 327 and 330 and attempts some reconstruction of the geography of the eastern Falkland Plateau during the Mesozoic.
Resumo:
Fluid circulation in peridotite-hosted hydrothermal systems influences the incorporation of carbon into the oceanic crust and its long-term storage. At low to moderate temperatures, serpentinization of peridotite produces alkaline fluids that are rich in CH4 and H2. Upon mixing with seawater, these fluids precipitate carbonate, forming an extensive network of calcite veins in the basement rocks, while H2 and CH4 serve as an energy source for microorganisms. Here, we analyzed the carbon geochemistry of two ancient peridotite-hosted hydrothermal systems: 1) ophiolites cropping out in the Northern Apennines, and 2) calcite-veined serpentinites from the Iberian Margin (Ocean Drilling Program (ODP) Legs 149 and 173), and compare them to active peridotite-hosted hydrothermal systems such as the Lost City hydrothermal field (LCHF) on the Atlantis Massif near the Mid-Atlantic Ridge (MAR). Our results show that large amounts of carbonate are formed during serpentinization of mantle rocks exposed on the seafloor (up to 9.6 wt.% C in ophicalcites) and that carbon incorporation decreases with depth. In the Northern Apennine serpentinites, serpentinization temperatures decrease from 240 °C to < 150 °C, while carbonates are formed at temperatures decreasing from ~ 150 °C to < 50 °C. At the Iberian Margin both carbonate formation and serpentinization temperatures are lower than in the Northern Apennines with serpentinization starting at ~ 150 °C, followed by clay alteration at < 100 °C and carbonate formation at < 19-44 °C. Comparison with various active peridotite-hosted hydrothermal systems on the MAR shows that the serpentinites from the Northern Apennines record a thermal evolution similar to that of the basement of the LCHF and that tectonic activity on the Jurassic seafloor, comparable to the present-day processes leading to oceanic core complexes, probably led to formation of fractures and faults, which promoted fluid circulation to greater depth and cooling of the mantle rocks. Thus, our study provides further evidence that the Northern Apennine serpentinites host a paleo-stockwork of a hydrothermal system similar to the basement of the LCHF. Furthermore, we argue that the extent of carbonate uptake is mainly controlled by the presence of fluid pathways. Low serpentinization temperatures promote microbial activity, which leads to enhanced biomass formation and the storage of organic carbon. Organic carbon becomes dominant with increasing depth and is the principal carbon phase at more than 50-100 m depth of the serpentinite basement at the Iberian Margin. We estimate that annually 1.1 to 2.7 × 1012 g C is stored within peridotites exposed to seawater, of which 30-40% is fixed within the uppermost 20-50 m mainly as carbonate. Additionally, we conclude that alteration of oceanic lithosphere is an important factor in the long-term global carbon cycle, having the potential to store carbon for millions of years.
Resumo:
The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (d13C TOC = -26 to -22 per mil) and long-chain n-alkanes (C27, C29 and C31, d13C = -34 to -29 per mil) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the d15N TN values of the bulk sediment (+4 to +8 per mil) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The d13C values of archaeal biomarker pentamethylicosane (PMI) (-46.4 per mil) and bacterial-sourced hopenes, diploptene and hop-21-ene (-40.9 to -34.7 per mil) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.
Resumo:
Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.
Resumo:
The first marine incursion of the incipient North Atlantic Ocean is recorded in the uppermost Triassic to Lower Jurassic sequence of DSDP Site 547 off central Morocco. A lithologic change from continental red beds below to slope breccias and hemipelagic carbonates above indicates that a carbonate ramp was probably established by Sinemurian time along the Moroccan continental margin and that subsidence in the adjacent basin was rapid in the early phases of continental rift. Foraminifers recovered from the Liassic (Sinemurian-Pliensbachian) basinal deposits are diverse and well preserved. The faunas are compositionally similar to contemporaneous neritic assemblages of Europe and the Grand Banks of Newfoundland. The Middle Jurassic in Hole 547B is characterized by regressive deposits that are poor in foraminifers. The major Late Jurassic "Atlantic" transgression is again represented by basinal deposits consisting of limestone breccias and pelagic carbonates. Foraminifers recovered from this interval are transitional between Late Jurassic assemblages reported from deep-sea deposits in the North Atlantic and typical Late Jurassic neritic assemblages of Europe. The Late Jurassic assemblages of Hole 547B are primarily dominated by nodosariids and spirillinids with moderate abundances of simple arenaceous forms. Nonreticulate epistominids occur very rarely in the Upper Jurassic of Hole 547B. It is tentatively suggested that these represent upper bathyal assemblages.
Resumo:
The Shales-with-'Beef' and Black Ven Marls of the Charmouth Mudstone Formation (Sinemurian) exposed on the Dorset Coast in southern England (Wessex Basin) show stratigraphic variation in carbonate, organic carbon and organic-carbon isotopes. Little environmental significance is attached to the variation of carbonate except in the case of the tabular and nodular limestones interrupting the sequence that probably record stratigraphic condensation and/or sedimentary stillstands that, in an extreme case, were accompanied by sea-floor erosion to produce the bored and encrusted 'Coinstone'. Relatively high total organiccarbon (TOC) contents are present in the laminated mudstones of the lower turneri Zone (upper brooki and lower birch Subzones) and the obtusum Zone (obtusum and stellare Subzones). Basin stratification related to fresh-water influx was the most likely aid to deoxygenation and enhanced preservation of organic matter. The organic-carbon isotope curve (d13Corg), which shows positive excursions in the upper turneri Zone (upper birchi Subzone) and highest obtusum - raricostatum Zones (highest stellare Subzone, densinodulum and lower raricostatoides Subzones), does not correlate with the TOC stratigraphy and was clearly not controlled by local patterns of organic-matter burial. Long-term (hundreds-of-thousands of years) variations in the carbon-isotope (d13Corg) curve are interpreted as reflecting changing seawater isotopic composition and, in the case of the stratigraphically higher interval, may be related to marine organic-carbon burial on the margins of the proto-Atlantic, as exemplified by the Lusitanian Basin in Portugal. Correlation of the carbon-isotope profile with putative sea-level curves is problematic in detail, although significant local transgressive pulses in the turneri and late raricostatum Zones are approximately coincident with positive d13Corg excursions.
Resumo:
In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.
Resumo:
The mid-Cretaceous is widely considered the archetypal ice-free greenhouse interval in Earth history, with a thermal maximum around Cenomanian-Turonian boundary time (ca. 90 Ma). However, contemporaneous glaciations have been hypothesized based on sequence stratigraphic evidence for rapid sea-level oscillation and oxygen isotope excursions in records generated from carbonates of questionable preservation and/or of low resolution. We present new oxygen isotope records for the mid-Cenomanian Demerara Rise that are of much higher resolution than previously available, taken from both planktic and benthic foraminifers, and utilizing only extremely well preserved glassy foraminifers. Our records show no evidence of glaciation, calling into question the hypothesized ice sheets and rendering the origin of inferred rapid sea-level oscillations enigmatic. Simple mass-balance calculations demonstrate that this Cretaceous sea-level paradox is unlikely to be explained by hidden ice sheets existing below the limit of d18O detection.