923 resultados para Geographical location codes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major determinant of the level of effective natural gas supply is the ease to feed customers, minimizing system total costs. The aim of this work is the study of the right number of Gas Supply Units – GSUs - and their optimal location in a gas network. This paper suggests a GSU location heuristic, based on Lagrangean relaxation techniques. The heuristic is tested on the Iberian natural gas network, a system modelized with 65 demand nodes, linked by physical and virtual pipelines. Lagrangean heuristic results along with the allocation of loads to gas sources are presented, using a 2015 forecast gas demand scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fingerprinting is an indoor location technique, based on wireless networks, where data stored during the offline phase is compared with data collected by the mobile device during the online phase. In most of the real-life scenarios, the mobile node used throughout the offline phase is different from the mobile nodes that will be used during the online phase. This means that there might be very significant differences between the Received Signal Strength values acquired by the mobile node and the ones stored in the Fingerprinting Map. As a consequence, this difference between RSS values might contribute to increase the location estimation error. One possible solution to minimize these differences is to adapt the RSS values, acquired during the online phase, before sending them to the Location Estimation Algorithm. Also the internal parameters of the Location Estimation Algorithms, for example the weights of the Weighted k-Nearest Neighbour, might need to be tuned for every type of terminal. This paper focuses both approaches, using Direct Search optimization methods to adapt the Received Signal Strength and to tune the Location Estimation Algorithm parameters. As a result it was possible to decrease the location estimation error originally obtained without any calibration procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current ubiquitous network access and increase in network bandwidth are driving the sales of mobile location-aware user devices and, consequently, the development of context-aware applications, namely location-based services. The goal of this project is to provide consumers of location-based services with a richer end-user experience by means of service composition, personalization, device adaptation and continuity of service. Our approach relies on a multi-agent system composed of proxy agents that act as mediators and providers of personalization meta-services, device adaptation and continuity of service for consumers of pre-existing location-based services. These proxy agents, which have Web services interfaces to ensure a high level of interoperability, perform service composition and take in consideration the preferences of the users, the limitations of the user devices, making the usage of different types of devices seamless for the end-user. To validate and evaluate the performance of this approach, use cases were defined, tests were conducted and results gathered which demonstrated that the initial goals were successfully fulfilled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atualmente os sistemas Automatic Vehicle Location (AVL) fazem parte do dia-a-dia de muitas empresas. Esta tecnologia tem evoluído significativamente ao longo da última década, tornando-se mais acessível e fácil de utilizar. Este trabalho consiste no desenvolvimento de um sistema de localização de veículos para smartphone Android. Para tal, foram desenvolvidas duas aplicações: uma aplicação de localização para smarphone Android e uma aplicação WEB de monitorização. A aplicação de localização permite a recolha de dados de localização GPS e estabelecer uma rede piconet Bluetooth, admitindo assim a comunicação simultânea com a unidade de controlo de um veículo (ECU) através de um adaptador OBDII/Bluetooth e com até sete sensores/dispositivos Bluetooth que podem ser instalados no veículo. Os dados recolhidos pela aplicação Android são enviados periodicamente (intervalo de tempo definido pelo utilizador) para um servidor Web No que diz respeito à aplicação WEB desenvolvida, esta permite a um gestor de frota efetuar a monitorização dos veículos em circulação/registados no sistema, podendo visualizar a posição geográfica dos mesmos num mapa interativo (Google Maps), dados do veículo (OBDII) e sensores/dispositivos Bluetooth para cada localização enviada pela aplicação Android. O sistema desenvolvido funciona tal como esperado. A aplicação Android foi testada inúmeras vezes e a diferentes velocidades do veículo, podendo inclusive funcionar em dois modos distintos: data logger e data pusher, consoante o estado da ligação à Internet do smartphone. Os sistemas de localização baseados em smartphone possuem vantagens relativamente aos sistemas convencionais, nomeadamente a portabilidade, facilidade de instalação e baixo custo.