926 resultados para Genomic Imprinting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose “C(d)C(S)C(S)” (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of the epidermal growth factor receptor family genes, which include ErbB-1, 2, 3 and 4, has been implicated in a number of cancers. We have studied the extent of ErbB-2 overexpression among Indian women with sporadic breast cancer. Methods: Immmunohistochemistry and genomic polymerase chain reaction (PCR) were used to study the ErbB2 overexpression. ErbB2 status was correlated with other clinico-pathological parameters, including patient survival. Results: ErbB-2 overexpression was detected in 43.2% (159/368) of the cases by immunohistochemistry. For a sub-set of patients (n = 55) for whom total DNA was available, ErbB-2 gene amplification was detected in 25.5% (14/55) of the cases by genomic PCR. While the ErbB2 overexpression was significantly higher in patients with lymphnode (χ2 = 12.06, P≤ 0.001), larger tumor size (χ2 = 8.22, P = 0.042) and ductal carcinoma (χ2 = 15.42, P ≤ 0.001), it was lower in patients with disease-free survival (χ2 = 22.13, P ≤ 0.001). Survival analysis on a sub-set of patients for whom survival data were available (n = 179) revealed that ErbB-2 status (χ2 =25.94, P ≤ 0.001), lymphnode status (χ2 = 12.68, P ≤ 0.001), distant metastasis (χ2 = 19.49, P ≤ 0.001) and stage of the disease (χ2 = 28.04, P ≤0.001) were markers of poor prognosis. Conclusions: ErbB-2 overexpression was significantly greater compared with the Western literature, but comparable to other Indian studies. Significant correlation was found between ErbB-2 status and lymphnode status, tumor size and ductal carcinoma. ErbB-2 status, lymph node status, distant metastasis and stage of the disease were found to be prognostic indicators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary organization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The silk glands of mulberry silkworm Bombyx mori are endoreplicating tissues in which the genomic DNA undergoes multiple rounds of replication without mitosis and nuclear division. In the absence of normal mitotic division, the cell cycle essentially alternates between the G1 and S phases. Cyclin E is crucial for the G1/S transition in both mitotic and endoreplicating cycles. We have cloned and characterized cyclin E (cyclin box) from B. mori, which is nearly identical to the Drosophila cyclin E box except for an insertion of 21 amino acids. Two distinct cyclin E transcripts (1.7 and 2.1 kb) were detected in the silk-gland cells of B. mori and in the B. mori-derived embryonic cell line, BmN. Using anti Cyclin E antibodies two protein bands of 52 and 44 kDa were detected in silk glands and BmN cells at Comparable levels. Both BmN- and the silk-gland cells showed the presence of the interacting kinase Cdk2. Transcripts of the mitotic cyclin, cyclin B, were barely detectable in the endoreplicating silk-gland cells and amounted to only 4-7% of that seen in the mitotically dividing BmN cells. The near absence of cyclin B transcripts and the abundant expression of cyclin E in the silk glands correlate well with the alternation of only G1 and S phases without the intervening mitosis in these cells. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct injection of genomic DNA from salt tolerant cv. Pokkali into developing floral tillers on IR20 produced transgenic seeds similar to Pokkali in husk colour and which germinated well in 0.2 M NaCl and had a 4-6-fold higher proline content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pituitary adenomas are common benign neoplasms. Although most of them are sporadic, a minority occurs in familial settings. Heterozygous germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were found to underlie familial pituitary adenomas, a condition designated as pituitary adenoma predisposition (PAP). PAP confers incomplete penetrance of mostly growth hormone (GH) secreting adenomas in young patients, who often lack a family history of pituitary adenomas. This thesis work aimed to clarify the molecular and clinical characteristics of PAP. Applying the multiplex ligation-dependent probe amplification assay (MLPA), we found large genomic AIP deletions to account for a subset of PAP. Therefore, MLPA could be considered in PAP suspected patients with no AIP mutations found with conventional sequencing. We generated an Aip mouse model to examine pituitary tumorigenesis in vivo. The heterozygous Aip mutation conferred complete penetrance of pituitary adenomas that were mostly GH-secreting, rendering the phenotype of the Aip mouse similar to that of PAP patients. We suggest that AIP may function as a candidate gatekeeper gene in somatotrophs. To clarify molecular mechanisms of tumorigenesis, we elucidated the expression of AIP-related molecules in human and mouse pituitary tumors. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT) was reduced in mouse Aip-deficient adenomas, and similar ARNT reduction was also evident in human AIP mutation positive adenomas. This suggests that in addition to participating in the hypoxia pathway, estrogen receptor signaling and xenobiotic response pathways, ARNT may play a role in AIP-related tumorigenesis. We also studied the characteristics and the response to therapy of PAP patients and found them to have an aggressive disease phenotype with young age at onset. Therefore, improvement in treatment outcomes of PAP patients would require their efficient identification and earlier diagnosis of the pituitary adenomas. The possible role of the RET proto-oncogene in tumorigenesis of familial AIP mutation negative pituitary adenomas was evaluated, but none of the found RET germline variants were considered pathogenic. Surprisingly, RET immunohistochemistry suggested possible underexpression of RET in AIP mutation positive pituitary adenomas an observation that merits further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixteen million nucleotide sequence of genome of various organisms have been analysed to detect and study the extent of occurrence of simple repetitive sequences. Two sequence motifs (TG/CA)n and (CT/AG)n capable of adopting unusual DNA structures, left handed Z-conformation and triple-helical conformation respectively, are found to be abundant in rodent and human genomes, but almost completely absent in bacterial genome. (TG/CA)n and (CT/AG)n sequences are present mostly in the intron or 5'/3' flanking regions of the genes. The presence of such repeat motifs in genomic sequence of higher eukaryotes has been correlated with their possible functional significance in nucleosome organization, recombination and gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro translation of belladonna mottle virus BDMV(I) genomic RNA in a rabbit reticulocyte lysate system produced proteins of Mr 210,000, 150,000 and 78,000 which form the non-structural proteins. The coat protein, on the other hand, was expressed from a subgenomic RNA which was found to be encapsidated in the empty capsids forming the top component viral particles. The implications of subgenomic RNA encapsidation in viral replication and assembly are discussed.