983 resultados para Genital Diseases, Male.
Resumo:
Introduction: proper management of chronic diseases is important for prevention of disease complications and yet some patients miss appointments for medical review thereby missing the opportunity for proper monitoring of their disease conditions. There is limited information on missed appointments among chronic disease patients in resource limited settings. This study aimed to determine the prevalence of missed appointments for medical review and associated factors among chronic disease patients in an urban area of Uganda.
Methods: patients or caregivers of children with chronic diseases were identified as they bought medicines from a community pharmacy. They were visited at home to access their medical documents and those whose chronic disease status was ascertained were enrolled. The data was collected using: questionnaires, review of medical documents, and in-depth interviews with chronic disease patients.
Results: the prevalence of missed appointments was 42% (95%CI=35-49%). The factors associated with missed appointments were: monthly income ?30US Dollars (OR=2.56, CI=1.25–5.26), affording less than half of prescribed drugs (OR=3.92, CI=1.64–9.40), not experiencing adverse events (OR=2.66, CI=1.26–5.61), not sure if treatment helps (OR=2.84, CI=1.047.77), not having a medicines administration schedule (OR=6.77, CI=2.11–21.68), and increasing number of drugs (OR=0.72, CI=0.53–0.98). Conclusion: patients missed appointments mainly due to: financial and health system barriers, conflicting commitments with appointments, and perceptions of the disease condition. Patients should be supported with accessible and affordable health services.
Resumo:
BACKGROUND: The past three decades have seen rapid improvements in the diagnosis and treatment of most cancers and the most important contributor has been research. Progress in rare cancers has been slower, not least because of the challenges of undertaking research.
SETTINGS: The International Rare Cancers Initiative (IRCI) is a partnership which aims to stimulate and facilitate the development of international clinical trials for patients with rare cancers. It is focused on interventional--usually randomized--clinical trials with the clear goal of improving outcomes for patients. The key challenges are organisational and methodological. A multi-disciplinary workshop to review the methods used in ICRI portfolio trials was held in Amsterdam in September 2013. Other as-yet unrealised methods were also discussed.
RESULTS: The IRCI trials are each presented to exemplify possible approaches to designing credible trials in rare cancers. Researchers may consider these for use in future trials and understand the choices made for each design.
INTERPRETATION: Trials can be designed using a wide array of possibilities. There is no 'one size fits all' solution. In order to make progress in the rare diseases, decisions to change practice will have to be based on less direct evidence from clinical trials than in more common diseases.
Resumo:
The myeloproliferative neoplasms (MPN) including polycythaemia vera (PV), essential thrombocythaemia and primary myelofibrosis (PMF) are rare diseases contributing to significant morbidity. Symptom management is a prime treatment objective but current symptom assessment tools have not been validated compared to the general population. The MPN-symptom assessment form (MPN-SAF), a reliable and validated clinical tool to assess MPN symptom burden, was administered to MPN patients (n = 106) and, for the first time, population controls (n = 124) as part of a UK case–control study. Mean symptom scores were compared between patients and controls adjusting for potential confounders. Mean patient scores were compared to data collected by the Mayo Clinic, USA on 1,446 international MPN patients to determine patient group representativeness. MPN patients had significantly higher mean scores than controls for 25 of the 26 symptoms measured (P < 0.05); fatigue was the most common symptom (92.4% and 78.1%, respectively). Female MPN patients suffered worse symptom burden than male patients (P < 0.001) and substantially worse burden than female controls (P < 0.001). Compared to the Mayo clinic patients, MPN-UK patients reported similar symptom burden but lower satiety (P = 0.046). Patients with PMF reported the worst symptom burden (88.3%); significantly higher than PV patients (P < 0.001). For the first time we report quality of life was worse in MPN-UK patients compared with controls (P < 0.001).
Resumo:
Background: The identification of pre-clinical microvascular damage in hypertension by non-invasive techniques has proved frustrating for clinicians. This proof of concept study investigated whether entropy, a novel summary measure for characterizing blood velocity waveforms, is altered in participants with hypertension and may therefore be useful in risk stratification.
Methods: Doppler ultrasound waveforms were obtained from the carotid and retrobulbar circulation in 42 participants with uncomplicated grade 1 hypertension (mean systolic/diastolic blood pressure (BP) 142/92 mmHg), and 26 healthy controls (mean systolic/diastolic BP 116/69 mmHg). Mean wavelet entropy was derived from flow-velocity data and compared with traditional haemodynamic measures of microvascular function, namely the resistive and pulsatility indices.
Results: Entropy, was significantly higher in control participants in the central retinal artery (CRA) (differential mean 0.11 (standard error 0.05 cms(-1)), CI 0.009 to 0.219, p 0.017) and ophthalmic artery (0.12 (0.05), CI 0.004 to 0.215, p 0.04). In comparison, the resistive index (0.12 (0.05), CI 0.005 to 0.226, p 0.029) and pulsatility index (0.96 (0.38), CI 0.19 to 1.72, p 0.015) showed significant differences between groups in the CRA alone. Regression analysis indicated that entropy was significantly influenced by age and systolic blood pressure (r values 0.4-0.6). None of the measures were significantly altered in the larger conduit vessel.
Conclusion: This is the first application of entropy to human blood velocity waveform analysis and shows that this new technique has the ability to discriminate health from early hypertensive disease, thereby promoting the early identification of cardiovascular disease in a young hypertensive population.
Resumo:
Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.
Resumo:
Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal 'masculinization programming window'. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ~3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders.
Resumo:
Invasive species have been cited as major causes of population extinctions in several animal and plant classes worldwide. The North American grey squirrel (Sciurus carolinensis) has a major detrimental effect on native red squirrel (Sciurus vulgaris) populations across Britain and Ireland, in part because it can be a reservoir host for the deadly squirrelpox virus (SQPV). Whilst various researchers have investigated the epizootiology of SQPV disease in grey squirrels and have modelled the consequent effects on red squirrel populations, less work has examined morphological and physiological characteristics that might make individual grey squirrels more susceptible to contracting SQPV. The current study investigated the putative relationships between morphology, parasitism, and SQPV exposure in grey squirrels. We found geographical, sex, and morphological differences in SQPV seroprevalence. In particular, larger animals, those with wide zygomatic arch widths (ZAW), males with large testes, and individuals with concurrent nematode and/or coccidial infections had an increased seroprevalence of SQPV. In addition, males with larger spleens, particularly those with narrow ZAW, were more likely to be exposed to SQPV. Overall these results show that there is variation in SQPV seroprevalence in grey squirrels and that, consequently, certain individual, or populations of, grey squirrels might be more responsible for transmitting SQPV to native red squirrel populations.
Resumo:
Diet-induced obesity can induce low-level inflammation and insulin resistance. Interleukin-1β (IL-1β) is one of the key proinflammatory cytokines that contributes to the generation of insulin resistance and diabetes, but the mechanisms that regulate obesity-driven inflammation are ill defined. Here we found reduced expression of the E3 ubiquitin ligase Pellino3 in human abdominal adipose tissue from obese subjects and in adipose tissue of mice fed a high-fat diet and showing signs of insulin resistance. Pellino3-deficient mice demonstrated exacerbated high-fat-diet-induced inflammation, IL-1β expression, and insulin resistance. Mechanistically, Pellino3 negatively regulated TNF receptor associated 6 (TRAF6)-mediated ubiquitination and stabilization of hypoxia-inducible factor 1α (HIF1α), resulting in reduced HIF1α-induced expression of IL-1β. Our studies identify a regulatory mechanism controlling diet-induced insulin resistance by highlighting a critical role for Pellino3 in regulating IL-1β expression with implications for diseases like type 2 diabetes.