979 resultados para Genetic Psychology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on genetic improvement of penaeid prawns for the character higher tail weight using methods of selective breeding were undertaken. Prior to the actual breeding experiments it was necessary to find out the quantum of available variability in the character tail weight amongst the natural populations of Penaeus merguiensis from the Indian waters. Thirteen morphometric variables were measured and various statistical analyses were carried out. The tail weight showed almost double values of coefficient of variation in the females than the males (C.V. 20.37 and 11.08 respectively). The combination of the characters viz. sixth segment length (SSL), sixth segment depth (SSD) and posterior abdominal circumference (PAC) gave the highest R super(2) values. These variables were easy to measure and gave maximum variation in the character tail weight without sacrificing the breeders in the brood stock. The quantitative character tail weight was influenced by both genetic and environmental factors was statistically ascertained by applying 2-Factor analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were undertaken to produce genetic clones derived from all homozygous mitotic gynogenetic individuals in rohu, Labeo rohita Ham. ln view of this, attempts were made to interfere with the normal functioning of the spindle apparatus during the first mitotic cell division of developing eggs using heat shocks, there by leading to the induction of mitotic gynogenetic diploids in the F1 generation. Afterwards, viable mitotic gynogenetic alevins were reared and a selected mature female fish was used to obtain ovulated eggs which were fertilized later with UV-irradiated milt. Milt was diluted with Cortland’s solution and the sperm concentration was maintained at 10⁸/ml. The UV-irradiation was carried out for 2 minutes at the intensity of 200 to 250 µW/cm² at 28± 1°C. The optimal heat shock of 40°C for 2 minutes applied at 25 to 30 minutes a.f. was used to induce mitotic gynogenesis in first (F1) generation and at 3 to 5 minutes a.f. to induce meiotic gynogenesis in the second (F2) generation. The results obtained are presented and the light they shed on the timing of the mitotic and meiotic cell division in this species is discussed.