931 resultados para Generalized inverse
Resumo:
∗ Partially supported by grant No. 433/94 NSF of the Ministry of Education and Science of the Republic of Bulgaria 1991 Mathematics Subject Classification:30C45
Resumo:
* This paper is partially supported by the National Science Fund of Bulgarian Ministry of Education and Science under contract № I–1401\2004 "Interactive Algorithms and Software Systems Supporting Multicriteria Decision Making".
Resumo:
In linear communication channels, spectral components (modes) defined by the Fourier transform of the signal propagate without interactions with each other. In certain nonlinear channels, such as the one modelled by the classical nonlinear Schrödinger equation, there are nonlinear modes (nonlinear signal spectrum) that also propagate without interacting with each other and without corresponding nonlinear cross talk, effectively, in a linear manner. Here, we describe in a constructive way how to introduce such nonlinear modes for a given input signal. We investigate the performance of the nonlinear inverse synthesis (NIS) method, in which the information is encoded directly onto the continuous part of the nonlinear signal spectrum. This transmission technique, combined with the appropriate distributed Raman amplification, can provide an effective eigenvalue division multiplexing with high spectral efficiency, thanks to highly suppressed channel cross talk. The proposed NIS approach can be integrated with any modulation formats. Here, we demonstrate numerically the feasibility of merging the NIS technique in a burst mode with high spectral efficiency methods, such as orthogonal frequency division multiplexing and Nyquist pulse shaping with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 4.5 dB, which is comparable to results achievable with multi-step per span digital back propagation.
Resumo:
The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless pathaveraged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital backpropagation.
Resumo:
A version of the thermodynamic perturbation theory based on a scaling transformation of the partition function has been applied to the statistical derivation of the equation of state in a highpressure region. Two modifications of the equations of state have been obtained on the basis of the free energy functional perturbation series. The comparative analysis of the experimental PV T- data on the isothermal compression for the supercritical fluids of inert gases has been carried out. © 2012.
Resumo:
Various combinatorial problems are effectively modelled in terms of (0,1) matrices. Origins are coming from n-cube geometry, hypergraph theory, inverse tomography problems, or directly from different models of application problems. Basically these problems are NP-complete. The paper considers a set of such problems and introduces approximation algorithms for their solutions applying Lagragean relaxation and related set of techniques.
Resumo:
The evaluation from experimental data, of physical quantities, which enter into the electromagnetic Maxwell equations, is described as inverse optical problem. The functional relations between the dependent and independent variables are of transcendental character and numeric procedures for evaluation of the unknowns are largely used. Herein, we discuss a direct approach to the solution, illustrated by a specific example of determination of thin films optical constants from spectrophotometric data. New algorithm is proposed for the parameters evaluation, which does not need an initial guess of the unknowns and does not use iterative procedures. Thus we overcome the intrinsic deficiency of minimization techniques, such as gradient search methods, Simplex methods, etc. The price of it is a need of more computing power, but our algorithm is easily implemented in structures such as grid clusters. We show the advantages of this approach and its potential for generalization to other inverse optical problems.
Resumo:
In the presented work the problem of generalized natural environment model of emergency monitoring is presented. The approach, based on using CASE-based technologies is proposed for methodology development in solving this problem. Usage of CASE-based technology and knowledge databases allow for quick and interactive monitoring of current natural environment state and allow to develop adequate model for just-in- time possible emergency modeling.
Resumo:
A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.
Resumo:
Mathematics Subject Classification: 42B35, 35L35, 35K35
Resumo:
Mathematics Subject Classification: 26A16, 26A33, 46E15.
Resumo:
Mathematics Subject Classification: 26A33, 33C20.
Resumo:
Mathematics Subject Classification: 33E12, 33FXX PACS (Physics Abstracts Classification Scheme): 02.30.Gp, 02.60.Gf
Resumo:
Mathematics Subject Classification: 26A33, 33E12, 33C20.
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C20