941 resultados para Gastrointestinal homeostasis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: MicroRNAs (miRNAs) are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when <5% of initial body weight (non-responders) and successful when >5% (responders). At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC) was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772) and three others were down-regulated (mir-223, mir-224 and mir-376b). Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b) also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histopathologic studies of lesions found in commercially important North Atlantic marine fishes are uncommon. As part of a comprehensive Northeast Fisheries Center program ("Ocean Pulse") to evaluate environmental and resource health on the U.S. Continental Shelf from Cape Hatteras to Nova Scotia, grossly visible lesions of the gills, integument, muscle, and viscera of primarily bottom-dwelling fishes were excised and examined using light microscopy. Several gadid and pleuronectid fishes accounted for most of the lesions observed. Most pathological examinations were incidental to samples taken for age and growth determination and evaluation of predator/prey relationships. Several gadids, with either gill, heart, or spleen lesions, were sampled more intensively. Gill lesions principally affected gadids and were caused by either microsporidans or an unidentified oocyte-like cell. The majority of gastrointestinal lesions consisted of encapsulated or encysted larval worms or microsporidan-induced cysts. Few heart lesions were found. Integumental lesioos included ulcers, lymphocystis, and trematode metacercariae. Liver lesions almost always consisted of encapsulated or encysted larval helminths. Necrotic granulomata were seen in muscle and microsporidan-induced granulomata in spleen. Although not numerous, histologically interesting lesions were noted in integument, heart, liver, spleen, and muscle of several fish species. Histologic study of tissues excised from a variety of demersal and pelagic fishes from the eastern North Atlantic (France, Germany, Spain) revealed assorted integumental, renal, hepatic, and splenic lesions. Small sample size and non-random sampling precluded obtaining a meaningful quantitative estimate of the prevalence of the observed lesions in the population at risk; however, a useful census has been made of the types of lesions present in commercially important marine fishes. (PDF file contains 20 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-beta deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated inorder to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper highlights the concept of information and the significance of environmental and occupational hazards associated with pond fish production in Nigeria and discuss the possible options for the ways forward. The major raw material used in fish production system is the organic manure (cow dung, poultry droppings, porcine manure etc) that serves as substrate for heterotrophic production of bacteria and protozoa, which act as food for zooplankton and the fish. The pathogenic organisms (viruses, bacteria, protozoa's, and parasites), are noted for the potential hazard to the fish handlers and consumers. Nine species from seven genera of bacteria associated with fish diseases are found to have association with diseases of human such as typhoid fever, bacillary dysentery and other gastrointestinal tract related problems. Also the environmental contaminants in pond fish production become important because of its significance to consumers' acceptance of the fish products

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria can remodel their membranes by fusing or dividing. These processes are required for the proper development and viability of multicellular organisms. At the cellular level, fusion is important for mitochondrial Ca2+ homeostasis, mitochondrial DNA maintenance, mitochondrial membrane potential, and respiration. Mitochondrial division, which is better known as fission, is important for apoptosis, mitophagy, and for the proper allocation of mitochondria to daughter cells during cellular division.

The functions of proteins involved in fission have been best characterized in the yeast model organism Sarccharomyces cerevisiae. Mitochondrial fission in mammals has some similarities. In both systems, a cytosolic dynamin-like protein, called Dnm1 in yeast and Drp1 in mammals, must be recruited to the mitochondrial surface and polymerized to promote membrane division. Recruitment of yeast Dnm1 requires only one mitochondrial outer membrane protein, named Fis1. Fis1 is conserved in mammals, but its importance for Drp1 recruitment is minor. In mammals, three other receptor proteins—Mff, MiD49, and MiD51—play a major role in recruiting Drp1 to mitochondria. Why mammals require three additional receptors, and whether they function together or separately, are fundamental questions for understanding the mechanism of mitochondrial fission in mammals.

We have determined that Mff, MiD49, or MiD51 can function independently of one another to recruit Drp1 to mitochondria. Fis1 plays a minor role in Drp1 recruitment, suggesting that the emergence of these additional receptors has replaced the system used by yeast. Additionally, we found that Fis1/Mff and the MiDs regulate Drp1 activity differentially. Fis1 and Mff promote constitutive mitochondrial fission, whereas the MiDs activate recruited Drp1 only during loss of respiration.

To better understand the function of the MiDs, we have determined the atomic structure of the cytoplasmic domain of MiD51, and performed a structure-function analysis of MiD49 based on its homology to MiD51. MiD51 adopts a nucleotidyl transferase fold, and binds ADP as a co-factor that is essential for its function. Both MiDs contain a loop segment that is not present in other nucleotidyl transferase proteins, and this loop is used to interact with Drp1 and to recruit it to mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A exposição materna durante o período gestacional a uma dieta restrita em proteínas (LP) prejudica o desenvolvimento do pâncreas endócrino em sua prole e aumenta a susceptibilidade à hipertensão, diabetes e obesidade na vida adulta. Há evidências de que esse fenômeno pode persistir em gerações subsequentes. Objetivou-se avaliar o efeito da restrição proteica sobre o metabolismo da glicose e morfometria pancreática na prole F3 de camundongos ao nascimento e ao desmame. Para tanto, fêmeas virgens de camundongos Suíços (F0) foram acasaladas e receberam dieta normo-proteica (19% de proteína - NP) ou uma dieta isocalórica restrita em proteínas (5% de proteína - LP) durante toda a gravidez. Durante a lactação e o restante do experimento, todos os grupos receberam a dieta NP. Os filhotes machos foram nomeados F1 (NP1 e LP1). As fêmeas F1 e F2 foram acasaladas para produzir F2 e F3 (NP2, LP2, NP3 e LP3), respectivamente. Semanalmente, os filhotes foram pesados e calculada a taxa de crescimento alométrico (log [massa corporal] = log a + log b [idade]). Os animais foram sacrificados nos dias 1 e 21 de idade, a glicemia foi determinada e o pâncreas retirado, pesado e analisado por estereologia e imunofluorescência; a insulina foi mensurada aos 21 dias. Como resultados, os filhotes restritos na primeira geração (LP1) foram menores ao nascer, mas apresentaram um crescimento acelerado nos primeiros sete dias de vida, mostrando catch-up com os controles; a prole LP2 demonstrou a maior massa corporal ao nascimento e tiveram uma taxa de crescimento mais lenta durante a lactação; não houve diferença na massa corporal e na taxa de crescimento na geração F3. A massa de pâncreas foi diminuída em LP1-LP3 ao nascimento, contudo foi aumentada em LP2 ao desmame. A densidade de volume e o diâmetro das ilhotas foram menores em todos os grupos restritos no dia 1 e 21, somente LP1 teve o menor número de ilhotas. Ao nascer, a massa de células beta foi menor em LP1-LP3 e permaneceu baixa durante a lactação. No dia 1 e 21, os filhotes foram normoglicêmicos, entretanto foram hipoinsulinêmicos ao desmame. Portanto, a restrição de proteínas em camundongos durante a gestação produz alterações morfológicas nas ilhotas pancreáticas, sugerindo que a homeostase da glicose foi mantida por um aumento da sensibilidade à insulina durante os primeiros estágios de vida na prole ao longo de três gerações consecutivas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.

Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.

Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.

In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.

In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.

Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model is proposed in this thesis for the control mechanism of free fatty acid-glucose metabolism in healthy individuals under resting conditions. The objective is to explain in a consistent manner some clinical laboratory observations such as glucose, insulin and free fatty acid responses to intravenous injection of glucose, insulin, etc. Responses up to only about two hours from the beginning of infusion are considered. The model is an extension of the one for glucose homeostasis proposed by Charette, Kadish and Sridhar (Modeling and Control Aspects of Glucose Homeostasis. Mathematical Biosciences, 1969). It is based upon a systems approach and agrees with the current theories of glucose and free fatty acid metabolism. The description is in terms of ordinary differential equations. Validation of the model is based on clinical laboratory data available at the present time. Finally procedures are suggested for systematically identifying the parameters associated with the free fatty acid portion of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los factores de transcripción E2F son cruciales en la transición G1/S del ciclo celular. El factor de transcripción E2F1 regula el metabolismo oxidativo y su falta genera resistencia a obesidad. Se desconoce si E2F1 y E2F2 están implicados en la regulación de la homeostasis metabólica hepática. Por ello, el objetivo fue investigar el papel de E2F1 y E2F2 en la modulación del metabolismo lipídico hepático y su repercusión a nivel orgánico. Se utilizaron ratones macho de 3 meses E2F1-/-, E2F2-/- y sus controles que serán alimentados con dieta control o rica en grasa (HFD) durante 10 semanas. Se analizaron parámetros séricos en estado de alimento y tras 13 horas de ayuno. Se investigaron in vivo los flujos metabólicos hepáticos implicados en la disponibilidad de fosfolípidos, diglicéridos y triglicéridos (TG) tras administración de sustratos radiactivos.