995 resultados para Gary Horvath
Resumo:
Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.
Resumo:
This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.
Resumo:
A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.
Resumo:
Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.
Resumo:
Focussing on Paul Rudolph’s Art & Architecture Building at Yale, this thesis demonstrates how the building synthesises the architect’s attitude to architectural education, urbanism and materiality. It tracks the evolution of the building from its origins – which bear a relationship to Rudolph’s pedagogical ideas – to later moments when its occupants and others reacted to it in a series of ways that could never have been foreseen. The A&A became the epicentre of the university’s counter culture movement before it was ravaged by a fire of undetermined origins. Arguably, it represents the last of its kind in American architecture, a turning point at the threshold of postmodernism. Using an archive that was only made available to researchers in 2009, this is the first study to draw extensively on the research files of the late architectural writer and educator, C. Ray Smith. Smith’s 1981 manuscript about the A&A entitled “The Biography of a Building,” was never published. The associated research files and transcripts of discussions with some thirty interviewees, including Rudolph, provide a previously unavailable wealth of information. Following Smith’s methodology, meetings were recorded with those involved in the A&A including, where possible, some of Smith’s original interviewees. When placed within other significant contexts – the physicality of the building itself as well as the literature which surrounds it – these previously untold accounts provide new perspectives and details, which deepen the understanding of the building and its place within architectural discourse. Issues revealed include the importance of the influence of Louis Kahn’s Yale Art Gallery and Yale’s Collegiate Gothic Campus on the building’s design. Following a tumultuous first fifty years, the A&A remains an integral part of the architectural education of Yale students and, furthermore, constitutes an important didactic tool for all students of architecture.
Resumo:
In spectra of jet-cooled C2H2 recorded with an FTIR spectrometer, the ν5, ν4 + ν5, ν3 and ν2 + ν4 + ν5 bands all exhibit an intensity distribution corresponding to ∼6 K for rotation, with no evidence of nuclear spin conversion. Spectra of C2H2 isolated in solid p-H2 show no evidence of rotation of C2H2. The strong interaction between ν3 and ν2 + ν4 + ν5 in the gas phase is diminished in solid p-H2. Lines associated with dimer, trimer and tetramer of C2H2 are identified. Spectral features characteristic of solid state acetylene are observed under jet-cooled conditions. © 2007 Elsevier B.V. All rights reserved.
Resumo:
To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.
Resumo:
This study, "Civil Rights on the Cell Block: Race, Reform, and Violence in Texas Prisons and the Nation, 1945-1990," offers a new perspective on the historical origins of the modern prison industrial complex, sexual violence in working-class culture, and the ways in which race shaped the prison experience. This study joins new scholarship that reperiodizes the Civil Rights era while also considering how violence and radicalism shaped the civil rights struggle. It places the criminal justice system at the heart of both an older racial order and within a prison-made civil rights movement that confronted the prison's power to deny citizenship and enforce racial hierarchies. By charting the trajectory of the civil rights movement in Texas prisons, my dissertation demonstrates how the internal struggle over rehabilitation and punishment shaped civil rights, racial formation, and the political contest between liberalism and conservatism. This dissertation offers a close case study of Texas, where the state prison system emerged as a national model for penal management. The dissertation begins with a hopeful story of reform marked by an apparently successful effort by the State of Texas to replace its notorious 1940s plantation/prison farm system with an efficient, business-oriented agricultural enterprise system. When this new system was fully operational in the 1960s, Texas garnered plaudits as a pioneering, modern, efficient, and business oriented Sun Belt state. But this reputation of competence and efficiency obfuscated the reality of a brutal system of internal prison management in which inmates acted as guards, employing coercive means to maintain control over the prisoner population. The inmates whom the prison system placed in charge also ran an internal prison economy in which money, food, human beings, reputations, favors, and sex all became commodities to be bought and sold. I analyze both how the Texas prison system managed to maintain its high external reputation for so long in the face of the internal reality and how that reputation collapsed when inmates, inspired by the Civil Rights Movement, revolted. My dissertation shows that this inmate Civil Rights rebellion was a success in forcing an end to the existing system but a failure in its attempts to make conditions in Texas prisons more humane. The new Texas prison regime, I conclude, utilized paramilitary practices, privatized prisons, and gang-related warfare to establish a new system that focused much more on law and order in the prisons than on the legal and human rights of prisoners. Placing the inmates and their struggle at the heart of the national debate over rights and "law and order" politics reveals an inter-racial social justice movement that asked the courts to reconsider how the state punished those who committed a crime while also reminding the public of the inmates' humanity and their constitutional rights.
Resumo:
The novel immune-type receptors (NITRs), which have been described in numerous bony fish species, are encoded by multigene families of inhibitory and activating receptors and are predicted to be functional orthologs to the mammalian natural killer cell receptors (NKRs). Within the zebrafish NITR family, nitr9 is the only gene predicted to encode an activating receptor. However, alternative RNA splicing generates three distinct nitr9 transcripts, each of which encodes a different isoform. Although nitr9 transcripts have been detected in zebrafish lymphocytes, the specific hematopoietic lineage(s) that expresses Nitr9 remains to be determined. In an effort to better understand the role of NITRs in zebrafish immunity, anti-Nitr9 monoclonal antibodies were generated and evaluated for the ability to recognize the three Nitr9 isoforms. The application of these antibodies to flow cytometry should prove to be useful for identifying the specific lymphocyte lineages that express Nitr9 and may permit the isolation of Nitr9-expressing cells that can be directly assessed for cytotoxic (e.g. NK) function.
Resumo:
Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family.
Resumo:
Gemstone Team Biofuels
Resumo:
Currently, lackluster battery capability is restricting the widespread integration of Smart Grids, limiting the long-term feasibility of alternative, green energy conversion technologies. Silicon nanoparticles have great conductivity for applications in rechargeable batteries, but have degradation issues due to changes in volume during lithiation/delithiation cycles. To combat this, we use electrochemical deposition to uniformly space silicon particles on graphene sheets to create a more stable structure. We found the process of electrochemical deposition degraded the graphene binding in the electrode material, severely reducing charge capacity. But, the usage of mechanically mixing silicon particles with grapheme yielded batteries better than those that are commercially available.
Resumo:
This paper describes how modeling technology has been used in providing fatigue life time data of two flip-chip models. Full-scale three-dimensional modeling of flip-chips under cyclic thermal loading has been combined with solder joint stand-off height prediction to analyze the stress and strain conditions in the two models. The Coffin-Manson empirical relationship is employed to predict the fatigue life times of the solder interconnects. In order to help designers in selecting the underfill material and the printed circuit board, the Young's modulus and the coefficient of thermal expansion of the underfill, as well as the thickness of the printed circuit boards are treated as variable parameters. Fatigue life times are therefore calculated over a range of these material and geometry parameters. In this paper we will also describe how the use of micro-via technology may affect fatigue life
Resumo:
The future of many companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Important questions for an engineer who is responsible for the quality of electronic parts such as printed circuit boards (PCBs) during design, production, assembly and after-sales support are: What is the impact of temperature? What is the impact of this temperature on the stress produced in the components? What is the electromagnetic compatibility (EMC) associated with such a design? At present, thermal, stress and EMC calculations are undertaken using different software tools that each require model build and meshing. This leads to a large investment in time, and hence cost, to undertake each of these simulations. This paper discusses the progression towards a fully integrated software environment, based on a common data model and user interface, having the capability to predict temperature, stress and EMC fields in a coupled manner. Such a modelling environment used early within the design stage of an electronic product will provide engineers with fast solutions to questions regarding thermal, stress and EMC issues. The paper concentrates on recent developments in creating such an integrated modeling environment with preliminary results from the analyses conducted. Further research into the thermal and stress related aspects of the paper is being conducted under a nationally funded project, while their application in reliability prediction will be addressed in a new European project called PROFIT.
Resumo:
This paper describes modelling technology and its use in providing data governing the assembly of flip-chip components. Details are given on the reflow and curing stages as well as the prediction of solder joint shapes. The reflow process involves the attachment of a die to a board via solder joints. After a reflow process, underfill material is placed between the die and the substrate where it is heated and cured. Upon cooling the thermal mismatch between the die, underfill, solder bumps, and substrate will result in a nonuniform deformation profile across the assembly and hence stress. Shape predictions then thermal solidification and stress prediction are undertaken on solder joints during the reflow process. Both thermal and stress calculations are undertaken to predict phenomena occurring during the curing of the underfill material. These stresses may result in delamination between the underfill and its surrounding materials leading to a subsequent reduction in component performance and lifetime. Comparisons between simulations and experiments for die curvature will be given for the reflow and curing process