986 resultados para Gamma-Tial Intermetallic Alloy
Resumo:
The effect of the gamma-form crystal on the thermal fractionation of a commercial poly(propylene-co-ethylene) (PPE) has been studied by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) techniques. Two thermal fractionation techniques, stepwise isothermal crystallization (SIC) and successive self-nucleation and annealing (SSA), have been used to characterize the molecular heterogeneity of the PPE. The results indicate that the SSA technique possesses a stronger fractionation ability than that of the SIC technique. The heating scan of the SSA fractionated sample exhibits 12 endothermic peaks, whereas the scan of the SIC fractionated sample only shows eight melting peaks. The WAXD observations of the fractionated PPE samples prove that the content of the gamma-form crystals formed during the thermal treatment of the SIC technique is much higher than that of the SSA treatment. The former is 57.4%, whereas the later is 12.6%. The effect of they-form crystals on thermal fractionation ability is discussed.
Resumo:
The Al50W50 alloy bulk bodies were fabricated by using mechanical alloying and hot-pressing in this work. The Al50W50 alloy had excellent thermal stability up to 1300 degreesC under vacuum and Its optimum microhardness, bending strength and compressive strength were 10.21 GPa, 570 MPa and 2.07 GPa, respectively.
Resumo:
Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.
Resumo:
The results obtained for poly(butylene succinate) (PBS) after Co-60 gamma-ray irradiation, studied by wide-angle X-ray diffraction (WAXD), differential scanning calorimeter (DSC) and polarizing optical microscopy (POM), revealed that the degree of crystallinity, melting temperature and enthalpy decreased with increasing irradiation dose, but that the crystal structure of PBS did not vary when compared to non-irradiated PBS. By using Scherrer equation, small changes occurred in the crystal sizes of L-020, L-110 and L-111. The spherulitic morphology of PBS was strongly dependent on irradiation dose and changed significantly at higher irradiation dosages. The crystallization kinetics of PBS indicated that the Avrami exponent (n) for irradiated PBS was reduced to 2.3, when compared to non-irradiated PBS (3.3).
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.
Resumo:
A novel structural triblock copolymer of poly(gamma-benzyl-L-glutamic acid)-b-poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PBLG-PEO-PCL) was synthesized by a new approach in the following three steps: (1) sequential anionic ring opening polymerization (ROP) of ethylene oxide and epsilon-caprolactone with an acetonitrile/potassium naphthalene initiator system to obtain a diblock copolymer CN-PEO-PCL with a cyano end-group; (2) conversion of the CN end-group into NH2 end-group by hydrogenation to obtain NH2-PEO-PCL; (3) ROP of gamma-benzyl-L-glutamate-N-carboxyanhydrides (Bz-L-GluNCA) with NH2-PEO-PCL as macroinitiator to obtain the target triblock copolymer. The structures from CN-PEO precursor to the triblock copolymers were confirmed by FT-IR and H-1 NMR spectroscopy, and their molecular weights were measured by gel permeation chromatography. The monomer of Bz-L-GluNCA can react almost quantitatively with the amino end-groups of NH2-PEO-PCL macroinitiator by ROP.
Resumo:
The RENi3 (RE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Y) series compounds have been prepared by arc melting constituent elements under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes, depending on different rare earth (RE) element. The electrochemical characteristics, including the electrochemical capacity, P-C isotherms, high rate chargeability (HRC) and high-rate dischargeability (HRD), of these alloys have been studied through the charge-discharge recycle testing at different temperatures, charge currents and discharge currents. The results show that YNi3 has the largest cell volume, smallest density, and moreover, it shows more satisfactory electrochemical characteristics than other alloys, including discharge capacity, HRC, HRD and low temperature dischargeablity.
Resumo:
The synthesis and characterization of catalysts based on bimetallic materials, Pt-Fe supported on multi-walled carbon nanotubes (MWNTs) for methanol electrooxidation is reported here. The catalyst was prepared by a spray-cooling process and characterized by TEM, EDS, ICP and XRD. The electrocatalytic properties of the Pt-Fe/MWNTs electrode for methanol oxidation have been investigated by cyclic voltammetry and chronoamperometry. It presented higher electrocatalytic activity and stability than a comparative Pt/ MWNTs catalyst. This may be attributed to the addition of Fe which leads to the small average particle size and high utilization of Pt in the Pt-Fe/MWNTs catalyst. The results imply that the Pt Fe/MWNTs composite has good potential applications in fuel cells.
Resumo:
Crystallographic and electrochemical characteristics of ball-milled Ti45Zr35Ni17Cu3 +xNi (x = 0, 5, 10, 15 and 20 mass%) composite powders have been investigated. The powders are composed of amorphous, I- and Ni-phases when x increases from 5 to 20. With increasing x, the amount of Ni-phase increases but the quasi-lattice constant decreases. The maximum discharge capacity first increases as x increases from 0 to 15 and then decreases when x increases further from 15 to 20. The high-rate dischargeability and cycling stability increase monotonically with increasing x. The improvement of the electrochemical characteristics is ascribed to the metallic nickel particles highly dispersed in the alloys, which improves the electrochemical kinetic properties and prevents the oxidation of the alloy electrodes, as well as to the mixed structure of amorphous and icosahedral quasicrystal line phases, which enhances the hydrogen diffusivity in the bulk of the alloy electrodes and efficiently inhibits the pulverization of the alloy particles.
Resumo:
The microstructure and electrochemical performance of Ti0.17Zr0.08V0.34Pd0.01Cr0.1Ni0.3 electrode alloy have been investigated using X-ray diffraction, field emission scanning electron microscopy-energy dispersive spectroscopy, inductively coupled plasma and electrochemical impedance spectroscopy. The alloy electrode has a higher discharge capacity than an AB(5) type alloy within a wider temperature span. The increase of the charge-transfer-resistances, and the dissolutions of V and Zr were responsible for the performance degradation of the alloy electrode.
Resumo:
Fe-Ni-O samples, with Fe/Ni ratio ranging from 2 to 1/3, were synthesized. Samples synthesized with and without citric acid in the precursor were compared and it was found that the addition of citric acid is the necessary condition for FeNi3 formation; it was found that FeNi3 alloys were formed in these samples even when calcined in an air atmosphere. X-ray diffraction and X-ray photoelectron spectroscopy measurements were used to characterize the samples. Because of the existence of FeNi3 alloys, Fe-Ni-O samples showed strong reactivity to NO and NO + O-2 but were inert to O-2 alone.
Resumo:
Icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy powder was ball-milled with 20 mass% Ni, and the effect of the ball-milling time (t) on crystallographic and electrochemical characteristics were investigated. The amounts of icosahedral quasicrystalline and Ni phases decreased when ball-milling time increased from 30 to 180 min. The powder consisted of amorphous and (Ni and Ti) phases after 360 min of ball-milling. The maximum discharge capacity of the powder electrodes first increased from 89 (t = 0 min) to 192 mAh g(-1) (t = 180 min), and then decreased to 138 mAh g(-1) (t = 360 min). The high-rate dischargeability and the discharge capacity after 15 cycles increased with increasing ball-milling time.
Resumo:
The electrochemical properties of the Ti0.17Zr0.08V0.35Cr0.10Ni0.30 alloy electrode were investigated. This alloy has good cycle life at 303 K, 313 K, and even at 323 K, but the discharge capacity decreases gradually at 333 K with increasing cycle number. Both the charge-discharge efficiency and the charge-discharge voltage reduce. The electrochemical impendence spectra indicate that the charge-transfer resistance decreases while the exchange current density increases as temperature increases. The apparent activation energy of the charge-transfer reaction is about 50 kJ mol(-1), which is higher than that on the AB(5) type alloy electrode.
Resumo:
A bulk Ti45Zr35Ni17Cu3 alloy, which consisted of the icosahedral quasicrystalline phase, was prepared by mechanical alloying(MA) and subsequent pulse discharge sintering. Ti45Zr35Ni17Cu3 amorphous powders (with particle size < 50 mu m) were obtained after mechanical alloying for more than 150 h from the mixture of the elemental powder. The transformation temperature range from amorphous phase to the quasicrystalline phase was from 400 K to 900 K. The mechanical properties of the bulk quasicrystalline alloy have been examined at room temperature. The Vickers hardness and compressive fracture strength were 620 +/- 40 and 1030 +/- 60 MPa, respectively. The bulk quasicrystalline alloy exhibited the elastic deformation by the compressive test. The fracture mode was brittle cleavage fracture.