966 resultados para GLUCAGON-LIKE PEPTIDE-2
Resumo:
Many new types of vaccines against infectious or malignant diseases are currently being proposed. Careful characterization of the induced immune response is required in assessing their efficiency. While in most studies human tumor antigen-specific T cells are analyzed after in vitro re-stimulation, we investigated these T cells directly ex vivo using fluorescent tetramers. In peripheral blood lymphocytes from untreated melanoma patients with advanced disease, a fraction of tumor antigen (Melan-A/MART-1)-specific T cells were non-naive, thus revealing tumor-driven immune activation. After immunotherapy with synthetic peptides plus adjuvant, we detected tumor antigen-specific T cells that proliferated and differentiated to memory cells in vivo in some melanoma patients. However, these cells did not present the features of effector cells as found in cytomegalovirus specific T cells analyzed in parallel. Thus, peptide plus adjuvant vaccines can lead to activation and expansion of antigen specific CD8(+) T cells in PBL. Differentiation to protective CD8(+) effector cells may, however, require additional vaccine components that stimulate T cells more efficiently, a major challenge for the development of future immunotherapy.
Resumo:
Résumé La Na,K-ATPase est une protéine transmembranaire, présente dans toutes les cellules de mammifères et indispensable à la viabilité cellulaire. Elle permet le maintien des gradients sodiques et potassiques à l'origine du potentiel membranaire en transportant 3 Na+ en dehors de la cellule contre 2 K+, grâce à l'énergie fournie par l'hydrolyse d'une molécule d'ATP. Le potentiel membranaire est indispensable au maintien de l'excitabilité cellulaire et à la transmission de l'influx nerveux. Il semblerait que la Na,K-ATPase soit liée à l'hypertension et à certains troubles neurologiques comme la Migraine Familiale Hémiplégique (1VIFH). La MFH est une forme de migraine avec aura, qui se caractérise par une hémiparésie. Cette forme de migraine est très rare. Elle se transmet génétiquement sur un mode autosomique dominant. Plusieurs mutations localisées dans le gène de la Na,K-ATPase ont été identifiées durant ces 3 dernières années. C'est la première fois qu'une maladie génétique est associée au gène de la Na,K-ATPase. La compréhension du fonctionnement de cette protéine peut donner des informations sur les mécanismes conduisant à ces pathologies. On sait que la fonction d'une protéine est liée à sa structure. L'étude de sa fonction nécessite donc l'étude de sa structure. Alors que la structure de la SERCA a été déterminée à haute résolution, par cristallographie, celle de la Na,K-ATPase ne l'est toujours pas. Mais ces 2 ATPases présentent une telle homologie qu'un modèle de la Na,K-ATPase a pu être élaboré à partir de la structure de la SERCA. Les objectifs de cette étude sont d'une part, de comprendre le contrôle de l'accessibilité du K+ extracellulaire àses sites de liaison. Pour cela, nous avons ciblé cette étude sur la 2ìème et la 31eme boucle extracellulaire, qui relient respectivement les segments transmembranaires (STM) 3-4 et 5-6. Le choix s'est porté sur ces 2 boucles car elles bordent le canal des cations formés des 4ième' Sième et 6'ème hélices. D'autre part, nous avons également essayer de comprendre les effets des mutations, liées à la Migraine Familiale Hémiplégique de type 2 (MFH2), sur la fonctionnalité de la Na,K-ATPase. Alors que les STM et les domaines cytoplasmiques sont relativement proches entre la Na,KATPase et la SERCA, les boucles extracellulaires présentent des différences. Le modèle n'est donc pas une approche fiable pour déterminer la structure et la fonction des régions extracellulaires. Nous avons alors utilisé une approche fonctionnelle faisant appel à la mutation dirigée puis à l'étude de l'activité fonctionnelle de la Na,K ATPase par électrophysiologie sur des ovocytes de Xenopus. En conclusion, nous pouvons dire que la troisième boucle extracellulaire participerait à la structure de la voie d'entrée des cations et que la deuxième boucle extracellulaire semble impliquée dans le contrôle de l'accessibilité des ions K+àses sites de liaison. Concernant les mutations associées à la MFH2, nos résultats ont montré une forte diminution de l'activité fonctionnelle de la pompe Na,K, inférieure aux conditions physiologiques de fonctionnement, et pour une des mutations nous avons observés une diminution de l'affmité apparente au K+ externe. Nous poumons faire l'hypothèse que l'origine pathologique de la migraine est liée à une diminution de l'activité de la pompe à Na+. Summary The Na,K-ATPase is a transmembrane protein, present in all mammalian cells and is necessary for the viability of the cells. It maintains the gradients of Na+ and K+ involved in the membrane potential, by transporting 3Na+ out the cell, and 2K+ into the cell, using the energy providing from one ATP molecule hydrolysis. The membrane potential is necessary for the cell excitability and for the transmission of the nervous signal. Some evidence show that Na,K-ATPase is involved in hypertension and neurological disorders like the Familial Hemiplegic Migraine (FHM). La FHM is a rare form of migraine characterised by aura and hemiparesis and an autosomal dominant transmission. Several mutations linked to the Na,KATPase gene have been identified during these 3 last years. It's the first genetic disorder associated with the Na,K-ATPase gene. Understand the function of this protein is important to elucidate the mechanisms implicated in these pathologies. The function of a protein is linked with its structure. Thus, to know the function of a protein, we need to know its structure. While the Ca-ATPase (SERCA) has been crystallised with a high resolution, the structure of the Na,K-ATPase is not known. Because of the great homology between these 2 ATPases, a model of the Na,K-ATPase was realised by comparing with the structure of the SERCA. The aim of this study is on one side, understand the control of the extracellular K+ accessibility to their binding sites. Because of theirs closed proximity with the cation pathway, located between the 4th, 5th and 6th helices, we have targeted this study on the 2nd and the 3rd extracellular loops linking respectively the transmembrane segment (TMS) 3 and 4, and the TMS 5 and 6. And on the other side, we have tried to understand the functional effects of mutations linked with the Familial Hemiplegic Migraine Type 2 (FHM2). In contrast with the transmembrane segments and the cytoplasmic domains, the extracellular loops show lots of difference between Na,K-ATPase and SERCA, the model is not a good approach to know the structure and the function of the extracellular loops. Thus, we have used a functional approach consisting in directed mutagenesis and the study of the functional activity of the Na,K-ATPase by electrophysiological techniques with Xenopus oocytes. In conclusion, we have demonstrated that the third extracellular loop could participate in the structure of the entry of the cations pathway and that the second extracellular loop could control the K+ accessibility to their binding sites. Concerning the mutations associated with the FHM2, our results showed a strong decrease in the functional activity of the Na,K-pump under physiological conditions and for one of mutations, induce a decrease in the apparent external K+ affinity. We could make the hypothesis that the pathogenesis of migraine is related to the decrease in Na,K-pump activity. Résumé au large publique De la même manière que l'assemblage des mots forme des phrases et que l'assemblage des phrases forme des histoires, l'assemblage des cellules forme des organes et l'ensemble des organes constitue les êtres vivants. La fonction d'une cellule dans le corps humain peut se rapprocher de celle d'une usine hydroélectrique. La matière première apportée est l'eau, l'usine électrique va ensuite convertir l'eau en énergie hydraulique pour fournir de l'électricité. Le fonctionnement de base d'une cellule suit le même processus. La cellule a besoin de matières premières (oxygène, nutriments, eau...) pour produire une énergie sous forme chimique, l'ATP. Cette énergie est utilisée par exemple pour contracter les muscles et permet donc à l'individu de se déplacer. Morphologiquement la cellule est une sorte de petit sac rempli de liquide (milieu intracellulaire) baignant elle-même dans le liquide (milieu extracellulaire) composant le corps humain (un adulte est constitué environ de 65 % d'eau). La composition du milieu intracellulaire est différente de celle du milieu extracellulaire. Cette différence doit être maintenue pour que l'organisme fonctionne correctement. Une des différences majeures est la quantité de sodium. En effet il y a beaucoup plus de sodium à l'extérieur qu'à l'intérieur de la cellule. Bien que l'intérieur de la cellule soit isolé de l'extérieur par une membrane, le sodium arrive à passer à travers cette membrane, ce qui a tendance à augmenter la quantité de sodium dans la cellule et donc à diminuer sa différence de concentration entre le milieu extracellulaire et le milieu intracellulaire. Mais dans les membranes, il existe des pompes qui tournent et dont le rôle est de rejeter le sodium de la cellule. Ces pompes sont des protéines connues sous le nom de pompe à sodium ou Na,K-ATPase. On lui attribue le nom de Na,K-ATPase car en réalité elle rejette du sodium (Na) et en échange elle fait entrer dans la cellule du potassium (K), et pour fonctionner elle a besoin d'énergie (ATP). Lorsque les pompes à sodium ne fonctionnent pas bien, cela peut conduire à des maladies. En effet la Migraine Familiale Hémiplégique de type 2, est une migraine très rare qui se caractérise par l'apparition de la paralysie de la moitié d'un corps avant l'apparition du mal de tête. C'est une maladie génétique (altération qui modifie la fonction d'une protéine) qui touche la pompe à sodium située dans le cerveau. On a découvert que certaines altérations (mutations) empêchent les pompes à sodium de fonctionner correctement. On pense alors que le développement des migraines est en partie dû au fait que ces pompes fonctionnent moins bien. Il est important de bien connaître la fonction de ces pompes car cela permet de comprendre des mécanismes pouvant conduire à certaines maladies, comme les migraines. En biologie, la fonction d'une protéine est étudiée à travers sa structure. C'est pourquoi l'objectif de cette thèse a été d'étudier la structure de la Na,K-ATPase afin de mieux comprendre son mécanisme d'action.
Resumo:
Atrial natriuretic peptide is cleared from plasma by clearance receptors and by enzymatic degradation by way of a neutral metalloendopeptidase. Inhibition of neutral metalloendopeptidase activity appears to provide an interesting approach to interfere with metabolism of atrial natriuretic peptide to enhance the renal and haemodynamic effects of endogenous atrial natriuretic peptide. In this study, the effects of SCH 34826, a new orally active neutral metalloendopeptidase inhibitor, have been evaluated in a single-blind, placebo-controlled study involving eight healthy volunteers who had maintained a high sodium intake for 5 days. SCH 34826 had no effect on blood pressure or heart rate in these normotensive subjects. SCH 34826 promoted significant increases in excretion of urinary sodium, phosphate, and calcium. The cumulative 5-hour urinary sodium excretion was 15.7 +/- 7.3 mmol for the placebo and 22.9 +/- 5, 26.7 +/- 6 (p less than 0.05), and 30.9 +/- 6.8 mmol (p less than 0.01) for the 400, 800, and 1600 mg SCH 34826 doses, respectively. During the same time interval, the cumulative urinary phosphate excretion increased by 0.3 +/- 0.4 mmol after placebo and by 1.5 +/- 0.3 (p less than 0.01), 1.95 +/- 0.3 (p less than 0.01), and 2.4 +/- 0.4 mmol (p less than 0.001) after 400, 800, and 1600 mg SCH 34826, respectively. There was no change in diuresis or excretion of urinary potassium and uric acid. The natriuretic response to SCH 34826 occurred in the absence of any change in plasma atrial natriuretic peptide levels but was associated with a dose-dependent elevation of urinary atrial natriuretic peptide and cyclic guanosine monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.
Resumo:
The identification of endogenously produced antigenic peptides presented by MHC class I molecules has opened the way to peptide-based strategies for CTL induction in vivo. Here we demonstrate that the induction in vivo of CTL directed against naturally processed antigens can be triggered by injection of syngeneic cells expressing covalent major histocompatibility complex class I-peptide complexes. In the model system used, the induction of HLA-Cw3 specific cytotoxic T lymphocytes (CTL) in mice by cell surface-associated, covalent H-2Kd (Kd)-Cw3 peptide complexes was investigated. The Kd-restricted Cw3 peptide 170-179 (RYLKNGKETL), which mimics the major natural epitope recognized by Cw3-specific CTL in H-2d mice, was converted to a photoreactive derivative by replacing Arg-170 with N-beta-(4-azidosalicyloyl)-L-2,3-diaminopropionic acid. This peptide derivative was equivalent to the parental Cw3 peptide in terms of binding to Kd molecules and recognition by Cw3-specific CTL clones and could be cross-linked efficiently and selectively to Kd molecules on the surface of Con A-stimulated spleen cells from H-2d mice. Photocross-linking prevented the rapid dissociation of Kd-peptide derivative complexes that takes place under physiological conditions. Cultures of spleen cells or peritoneal exudate cells from mice inoculated i.p. with peptide-pulsed and photocross-linked cells developed a strong CTL response following antigenic stimulation in vitro. The cultured cells efficiently lysed not only target cells sensitized with the Cw3 170-179 peptide but also target cells transfected with the Cw3 gene. Moreover, their TCR preferentially expressed V beta 10 and J alpha pHDS58 segments as well as conserved junctional sequences, as has been observed previously in Cw3-specific CTL responses. In contrast, no Cw3-specific CTL response could be obtained in cultures derived from mice injected with Con A-stimulated spleen cells pulsed with the peptide derivative without photocross-linking.
Resumo:
The diuretic and natriuretic responses to exogenous synthetic atrial natriuretic peptide (ANP) were evaluated in patients with chronic renal failure (CRF) or nephrotic syndrome (NS). Patients were studied after an oral water load (8 ml/kg in CRF and 20 ml/kg in NS patients). A short intravenous bolus of either a placebo or ANP was administered when urine output was stable. In each group of patients, three doses of ANP were injected at 24 h intervals, i.e., 1.0, 1.5, and 2.0 micrograms/kg in the CRF and 1.0, 1.5, and 3.0 micrograms/kg in the NS group. Blood pressure and heart rate were monitored throughout the study and urinary volume and electrolyte excretion were measured every 20 min up to 3 h after the bolus. An acute and transient fall in blood pressure was observed immediately after the ANP injection. It was more pronounced in CRF than in NS patients. In CRF patients, ANP caused only a slight increase in urinary volume (13.5-44% over baseline) but a significant increase in urinary sodium excretion (45-114% over baseline). In NS patients, significant increases in both urine volume (60-105%) and sodium excretion (149-248%) were also found. In these latter patients, the renal response to ANP appeared to be better preserved. The hemodynamic and renal changes induced by ANP occurred mainly during the first 20 min following the ANP administration, when the peak plasma ANP levels were obtained. However, no clear dose-response effect could be evidenced in either group with the three doses of ANP chosen in this study.
Resumo:
The renal site of the natriuretic effect of human, atrial natriuretic peptide (hANP) was studied using clearance techniques in eight salt-loaded normal volunteers undergoing maximal water diuresis. Lithium was used as a marker of proximal sodium reabsorption. According to a two-way, single blind, crossover design, hANP (Met12-(3-28)-eicosahexapeptide, (2 micrograms/min) or its vehicle (Ve) were infused for two hours, followed by a two-hour recovery period. Blood pressure, heart rate and insulin clearance remained unchanged. During hANP infusion, the filtration fraction increased slightly from 19.6 to 24.3% (P less than 0.001), fractional water excretion rose transiently at the beginning of the infusion. Fractional excretion of sodium increased markedly from 2.2% to 7.4% (P less than 0.001) but remained unchanged with Ve. ANP increased fractional excretion of lithium slightly from 46 to 58% (P less than 0.01), while it remained stable at 47% during Ve. The distal tubular rejection fraction of sodium calculated from sodium and lithium clearances rose markedly from 4.7 to 13% (P less than 0.001) and returned to 6.2% at the end of the recovery period. Thus, under salt loading and water diuresis conditions, hANP infusion did not alter GFR, but reduced proximal reabsorption of sodium, and markedly enhanced the fraction of sodium escaping distal tubular reabsorption, suggesting that hANP-induced natriuresis is due, for an important part, to inhibition of sodium reabsorption in the distal nephron.
Resumo:
A novel approach for the identification of tumor antigen-derived sequences recognized by CD8(+) cytolytic T lymphocytes (CTL) consists in using synthetic combinatorial peptide libraries. Here we have screened a library composed of 3.1 x 10(11) nonapeptides arranged in a positional scanning format, in a cytotoxicity assay, to search the antigen recognized by melanoma-reactive CTL of unknown specificity. The results of this analysis enabled the identification of several optimal peptide ligands, as most of the individual nonapeptides deduced from the primary screening were efficiently recognized by the CTL. The results of the library screening were also analyzed with a mathematical approach based on a model of independent and additive contribution of individual amino acids to antigen recognition. This biometrical data analysis enabled the retrieval, in public databases, of the native antigenic peptide SSX-2(41-49), whose sequence is highly homologous to the ones deduced from the library screening, among the ones with the highest stimulatory score. These results underline the high predictive value of positional scanning synthetic combinatorial peptide library analysis and encourage its use for the identification of CTL ligands.
Resumo:
In recent years, several vasopressin antagonists have been developed that block V-1 receptors either selectively or nonselectively.(1,2) To date, one combined V-1/V-2 antagonist (primarily a V-2 antagonist, as determined on the basis of human receptor binding data), conivaptan, has been approved for the treatment of euvolemic hyponatremia.(3,4) We have previously shown that the vascular properties of a vasopressin V-1 antagonist can be investigated safely and reliably in healthy subjects. We used the measurement of skin blood flow after intradermic injection of exogenous arginine vasopressin on a skin area prevasodilated with calcitonin gene-related peptide (CGRP).(3,5) This technique enables the documentation of the dose-dependent effects of vasopressin or vasopressin antagonists. In this study, we have characterized the V-1a pharmacodynamic profile of increasing doses of RWJ-676070, a new orally active dual V-1a/V-2 receptor antagonist, in healthy subjects.(5)
Resumo:
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.
Resumo:
A fluorescent oligopeptide substrate for the promastigote surface protease (PSP) of Leishmania was designed using the data reported for the substrate specificity of the enzyme (Bouvier, J., Schneider, P., Etges, R. J., and Bordier, C. 1990. Biochemistry 29, 10113-10119). The indole fluorescence of the tryptophan residue was efficiently quenched through resonance energy transfer by an N-terminal dansyl group located five amino acid residues away. The heptapeptide, dansyl-A-Y-L-K-K-W-V-NH2, was cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 8.8 x 10(6) M-1sec-1. Hydrolysis by the enzyme results in a time-dependent increase of fluorescence intensity of 3.7-fold. Assays can be designed based on the tryptophan fluorescence at 360 nm or by individual product analyses using thin-layer chromatography. The synthetic substrate is readily cleaved by the metalloprotease at the surface of fixed promastigotes. The specificity and sensitivity of such internally quenched fluorescent peptide substrate will facilitate the identification of novel inhibitors for the enzyme and aid in detailed studies on its enzymology.
Resumo:
Thirty-five HLA-A2(+) patients with completely resected stage I-III melanoma were vaccinated multiple times over 6 months with a modified melanoma peptide, gp100(209-2M), emulsified in Montanide adjuvant. Direct ex vivo gp100(209-2M) tetramer analysis of pre- and postvaccine peripheral blood mononuclear cells (PBMCs) demonstrated significant increases in the frequency of tetramer(+) CD8(+) T cells after immunization for 33 of 35 evaluable patients (median, 0.36%; range, 0.05-8.9%). Ex vivo IFN-gamma cytokine flow cytometry analysis of postvaccine PBMCs after brief gp100(209-2M) in vitro activation showed that for all of the patients studied tetramer(+) CD8(+) T cells produced IFN-gamma; however, some patients had significant numbers of tetramer(+) IFN-gamma(-) CD8(+)T cells suggesting functional anergy. Additionally, 8 day gp100(209-2M) in vitro stimulation (IVS) of pre- and postvaccine PBMCs resulted in significant expansion of tetramer(+) CD8(+) T cells from postvaccine cells for 34 patients, and these IVS tetramer(+) CD8(+) T cells were functionally responsive by IFN-gamma cytokine flow cytometry analysis after restimulation with either native or modified gp100 peptide. However, correlated functional and phenotype analysis of IVS-expanded postvaccine CD8(+) T cells demonstrated the proliferation of functionally anergic gp100(209-2M)- tetramer(+) CD8(+) T cells in several patients and also indicated interpatient variability of gp100(209-2M) stimulated T-cell proliferation. Flow cytometry analysis of cryopreserved postvaccine PBMCs from representative patients showed that the majority of tetramer(+) CD8+ T cells (78.1 +/- 4.2%) had either an "effector" (CD45 RA(+)/CCR7(-)) or an "effector-memory" phenotype (CD45RA(-)/CCR7(-)). Notably, analysis of PBMCs collected 12-24 months after vaccine therapy demonstrated the durable presence of gp100(209-2M)-specific memory CD8(+) T cells with high proliferation potential. Overall, this report demonstrates that after vaccination with a MHC class I-restricted melanoma peptide, resected nonmetastatic melanoma patients can mount a significant antigen-specific CD8(+) T-cell immune response with a functionally intact memory component. The data further support the combined use of tetramer binding and functional assays in correlated ex vivo and IVS settings as a standard for immunomonitoring of cancer vaccine patients.
Resumo:
Proneuropeptide Y (ProNPY) undergoes cleavage at a single dibasic site Lys38-Arg39 resulting in the formation of 1-39 amino acid NPY which is further processed successively by carboxypeptidase-like and peptidylglycine alpha-amidating monooxygenase enzymes. To investigate whether prohormone convertases are involved in ProNPY processing, a vaccinia virus derived expression system was used to coexpress recombinant ProNPY with each of the prohormone convertases PC1/3, PC2, furin, and PACE4 in Neuro2A and NIH 3T3 cell lines as regulated neuroendocrine and constitutive prototype cell lines, respectively. The analysis of processed products shows that only PC1/3 generates NPY in NIH 3T3 cells while both PC1/3 and PC2 are able to generate NPY in Neuro2A cells. The convertases furin and PACE4 are unable to process ProNPY in either cell line. Moreover, comparative in vitro cleavage of recombinant NPY precursor by the enzymes PC1/3, PC2 and furin shows that only PC1/3 and PC2 are involved in specific cleavage of the dibasic site. Kinetic studies demonstrate that PC1/3 cleaves ProNPY more efficiently than PC2. The main difference between the cleavage efficiency is observed in the Vmax values whereas no major difference is observed in Km values. In addition the cleavage by PC1/3 and PC2 of two peptides reproducing the dibasic cleavage site with different amino acid sequence lengths namely (20-49)-ProNPY and (28-43)-ProNPY was studied. These shortened ProNPY substrates, when recognized by the enzymes, are more efficiently cleaved than ProNPY itself. The shortest peptide is not cleaved by PC2 while it is by PC1/3. On the basis of these observations it is proposed, first, that the constitutive secreted NPY does not result from the cleavage carried out by ubiquitously expressed enzymes furin and PACE4; second, that PC1/3 and PC2 are not equipotent in the cleavage of ProNPY; and third, substrate peptide length might discriminate PC1/3 and PC2 processing activity.
Resumo:
OBJECTIVES: Toll-like receptors (TLRs) are innate immune sensors that are integral to resisting chronic and opportunistic infections. Mounting evidence implicates TLR polymorphisms in susceptibilities to various infectious diseases, including HIV-1. We investigated the impact of TLR single nucleotide polymorphisms (SNPs) on clinical outcome in a seroincident cohort of HIV-1-infected volunteers. DESIGN: We analyzed TLR SNPs in 201 antiretroviral treatment-naive HIV-1-infected volunteers from a longitudinal seroincident cohort with regular follow-up intervals (median follow-up 4.2 years, interquartile range 4.4). Participants were stratified into two groups according to either disease progression, defined as peripheral blood CD4(+) T-cell decline over time, or peak and setpoint viral load. METHODS: Haplotype tagging SNPs from TLR2, TLR3, TLR4, and TLR9 were detected by mass array genotyping, and CD4(+) T-cell counts and viral load measurements were determined prior to antiretroviral therapy initiation. The association of TLR haplotypes with viral load and rapid progression was assessed by multivariate regression models using age and sex as covariates. RESULTS: Two TLR4 SNPs in strong linkage disequilibrium [1063 A/G (D299G) and 1363 C/T (T399I)] were more frequent among individuals with high peak viral load compared with low/moderate peak viral load (odds ratio 6.65, 95% confidence interval 2.19-20.46, P < 0.001; adjusted P = 0.002 for 1063 A/G). In addition, a TLR9 SNP previously associated with slow progression was found less frequently among individuals with high viral setpoint compared with low/moderate setpoint (odds ratio 0.29, 95% confidence interval 0.13-0.65, P = 0.003, adjusted P = 0.04). CONCLUSION: This study suggests a potentially new role for TLR4 polymorphisms in HIV-1 peak viral load and confirms a role for TLR9 polymorphisms in disease progression.
Resumo:
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.