931 resultados para GLASS-TRANSITION TEMPERATURE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colossal electroresistance and current induced resistivity switching have been measured in the ferromagnetic insulating (FMI) state of single crystal manganite La0.82Ca0.18MnO3. The sample has a Curie transition temperature TC = 165 K and the FMI state is realized for temperatures T<100 K. The electroresistance (ER), arising from a strong nonlinear resistivity, attains a large value ( ≈ 100%) in the FMI state. However, this is accompanied by a collapse of the magnetoresistance (MR) to a small value even in magnetic field (H) of 10 T. This demonstrates that the mechanisms that give rise to ER and MR are effectively decoupled.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zn1−xMgxO (x = 0.3) thin films have been fabricated on Pt/TiO2/SiO2/Si substrates using multimagnetron sputtering technique. The films with wurtzite structure showed a (002) preferred orientation. Ferroelectricity in Zn1−xMgxO films was established from the temperature dependent dielectric constant and the polarization hysteresis loop. The temperature dependent study of dielectric constant at different frequencies exhibited a dielectric anomaly at 110 °C. The resistivity versus temperature characteristics showed an anomalous increase in the vicinity of the dielectric transition temperature. The Zn1−xMgxO thin films exhibit well-defined polarization hysteresis loop, with a remanent polarization of 0.2 μC/cm2 and coercive field of 8 kV/cm at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Griffiths phase-like features and the spin-phonon coupling effects observed in Tb(2)NiMnO(6) are reported. The double perovskite compound crystallizes in monoclinic P2(1)/n space group and exhibits a magnetic phase transition at T(c) similar to 111 K as an abrupt change in magnetization. A negative deviation from ideal Curie-Weiss law exhibited by 1/chi(T) curves and less-than-unity susceptibility exponents from the power-law analysis of inverse susceptibility are reminiscent of Griffiths phase-like features. Arrott plots derived from magnetization isotherms support the inhomogeneous nature of magnetism in this material. The observed effects originate from antiferromagnetic interactions that arise from inherent disorder in the system. Raman scattering experiments display no magnetic-order-induced phonon renormalization below Tc in Tb(2)NiMnO(6), which is different from the results observed in other double perovskites and is correlated to the smaller size of the rare earth. The temperature evolution of full-width-at-half-maximum for the stretching mode at 645 cm(-1) presents an anomaly that coincides with the magnetic transition temperature and signals a close connection between magnetism and lattice in this material. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671674]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the electronic structure of a double perovskite Ca2FeReO6 using photoemission spectroscopy and LDA+U bandstructure calculations. Small spectral weight at the Fermi level observed above the metal–insulator transition temperature, gradually disappears with decreasing T, forming a small (≤50 meV) energy gap. To reproduce this small energy gap, we require a very large effective U (Ueff) for Re (4 eV) in addition to Ueff of 4 eV for Fe. From simple calculations in terms of the ionic radii, we demonstrate that the Fe–Re bandwidth is smaller than that of Fe–Mo in Ca2FeMoO6, which should yield a strong electron correlation in the Re 5d bands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lanthanum doped lead titanate thin films are the potential candidates for the capacitors, actuators and pyroelectric sensor applications due to their excellent dielectric, and ferroelectric properties. Lanthanum doped lead titanate thin films are grown on platinum coated Si substrates by excimer laser ablation technique. A broad diffused phase transition with the maximum dielectric permittivity (ϵmax) shifting to higher temperatures with the increase of frequency, along with frequency dispersion below Tc, which are the signatures of the relaxor like characteristics were observed. The dielectric properties are investigated from −60°C to 200°C with an application of different dc fields. With increasing dc field, the dielectric constant is observed to reduce and phase transition temperature shifted to higher temperature. With the increased ac signal amplitude of the applied frequency, the magnitude of the dielectric constant is increasing and the frequency dispersion is observed in ferroelectric phase, whereas in paraelectric phase, there is no dispersion has been observed. The results are correlated with the existing theories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the presence of a synthetic non-Abelian gauge field that produces a Rashba-like spin-orbit interaction, a collection of weakly interacting fermions undergoes a crossover from a Bardeen-Cooper-Schrieffer (BCS) ground state to a Bose-Einstein condensate (BEC) ground state when the strength of the gauge field is increased (Vyasanakere et al 2011 Phys. Rev. B 84 014512). The BEC that is obtained at large gauge coupling strengths is a condensate of tightly bound bosonic fermion pairs. The properties of these bosons are solely determined by the Rashba gauge field-hence called rashbons. In this paper, we conduct a systematic study of the properties of rashbons and their dispersion. This study reveals a new qualitative aspect of the problem of interacting fermions in non-Abelian gauge fields, i.e. that the rashbon state ceases to exist when the center-of-mass momentum of the fermions exceeds a critical value that is of the order of the gauge coupling strength. The study allows us to estimate the transition temperature of the rashbon BEC and suggests a route to enhance the exponentially small transition temperature of the system with a fixed weak attraction to the order of the Fermi temperature by tuning the strength of the non-Abelian gauge field. The nature of the rashbon dispersion, and in particular the absence of the rashbon states at large momenta, suggests a regime in parameter space where the normal state of the system will be a dynamical mixture of uncondensed rashbons and unpaired helical fermions. Such a state should show many novel features including pseudogap physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 to 315 K covering a spectral range from 100 to 2200 cm(-1) and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering-induced phonon renormalization are evident in (1) anomalous temperature dependence of many modes with frequencies below 850 cm(-1), particularly near the magnetic transition temperature T-c approximate to 250 K, and (2) distinct changes in band positions of high-frequency Raman bands between 1100 and 1800 cm(-1); in particular, a broad mode near 1250 cm(-1) appears only below T-c, attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies similar to 100 K due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of the phonons' spectrum and their coupling with spins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ce-doped BiFeO3 (BFO) nanoparticles (NPs) were synthesized using a facile solgel route with varying Ce concentrations in the range of 15 mol%. Ferroelectric transition temperature was found to shift from 723 degrees C +/- 5 degrees C for pristine BFO NPs to 534 degrees C +/- 3 degrees C for 5 mol% Ce-doped BFO NPs. UVVis absorption spectra of BFO NPs showed a significant blue shift of similar to 100 nm on Ce doping. The Fourier transformed infrared (FTIR) spectrum centered similar to 550 cm(-1) becomes considerably broadened on Ce doping which is due to additional closely spaced vibrational peaks as revealed by the second derivative FTIR analysis. High-frequency EPR measurements indicated that clustering occurs at high dopant levels, and that Fe is present as Fe(3+)corroborating Mossbauer measurements. The values of saturation and remanent magnetization for 3% Ce-doped BFO NPs are 3.03 and 0.49 emu/g, respectively, which are quite significant at room temperature, making it more suitable for technological applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports investigation of Na2O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generation and study of synthetic gauge fields has enhanced the possibility of using cold atom systems as quantum emulators of condensed matter Hamiltonians. In this article we describe the physics of interacting spin -1/2 fermions in synthetic non-Abelian gauge fields which induce a Rashba spin-orbit interaction on the motion of the fermions. We show that the fermion system can evolve to a Bose-Einstein condensate of a novel boson which we call rashbon. The rashbon-rashbon interaction is shown to be independent of the interaction between the constituent fermions. We also show that spin-orbit coupling can help enhancing superfluid transition temperature of weak superfluids to the order of Fermi temperature. A non-Abelian gauge field, when used in conjunction with another potential, can generate interesting Hamiltonians such as that of a magnetic monopole.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mixed-metal metal-organic framework (MOF) compound NiMn2{C6H3(COO)(3)}(2)], I, is prepared hydrothermally by replacing one of the octahedral Mn2+ ions in Mn-3{C6H3(COO)(3)}(2)] by Ni2+ ions. Magnetic studies on I suggest antiferromagnetic interactions with weak canted antiferromagnetism below 8 K. On heating in flowing air I transforms to NiMn2O4 spinel at low temperature (T < 400 degrees C). The thermal decomposition of I at different temperatures results in NiMn2O4 with particle sizes in the nano regime. The nanoparticle nature of NiMn2O4 was confirmed using PXRD and TEM studies. Magnetic studies on the nanoparticles of NiMn2O4 indicate ferrimagnetism. The transition temperature of NiMn2O4 nanoparticles exhibits a direct correlation with the particle size. This study highlights the usefulness of MOF compound as a single-source precursor for the preparation of important ceramic oxides with better control on the stoichiometry and particle size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tensile behavior of a high activity stand-alone Pt-aluminide (PtAl) bond coat was evaluated by the micro-tensile test method at various temperatures (room temperature to 1100 degrees C) and strain rates (10(-5) s(-1)-10(-1) s(-1).) At all strain rates, the stress strain behavior of the stand-alone coating was significantly affected by the variation in temperature. The stress strain response was linear, indicating brittle behavior, at temperatures below the brittle ductile transition temperature (BDTT). The coating exhibited appreciable ductility (up to 2%) above the BDTT. The strength (both yield stress and ultimate tensile strength) of the coating decreased and its ductility increased with increasing temperature above the BDTT. The tensile behavior of the coating was sensitive to strain rate in the ductile regime, with its strength increasing with increasing strain rate at any given temperature. The BDTT of the coating was found to increase with increasing with increasing strain rate. The coating exhibited two distinct mechanisms of deformation above the BDTT. The transition temperature for the change of deformation mechanism also increased with increasing strain rate. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polycrystalline Ca0.18Sr0.226Ba0.594Nb2O6 (CSBN18) was synthesized via the solid-state reaction route. X-ray structural studies confirmed it belonged to the tetragonal tungsten bronze family. Rietveld refinement of the X-ray data has been carried out for CSBN18 where the atomic positions and site occupancy factors for A-sites have been determined. The dielectric properties of CSBN18 ceramic were studied as a function of temperature in the 100 Hz - 1 MHz frequency range. The dielectric relaxation followed the Vogel-Fulcher relation wherein E-a = 37.4 meV; T-f = 131.5 degrees C and omega(0) = 4.31 x 10(9) rad s(-1). A high pyroelectric coefficient of similar to 250 mu C m(-2).K was obtained around the transition temperature (similar to 150 degrees C). This is significantly higher than that reported for polycrystalline SrxBa1-xNb2O6 (SBN). However, the piezoelectric coefficient (d(33)) of the title composition was as low as 6 pC N-1.