989 resultados para GEOMETRICAL ISOMERIZATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the study, both experimental work and numerical modeling are performed to investigate the pore size effects on the mechanical properties and deformation behaviours of titanium foams. Cylindrical titanium foam samples with different pore sizes are fabricated through powder metallurgy. Scanning electron microscope (SEM) is used to determine the pore size, pore distribution and the ratios of the length to width of pores. Compressive tests are carried out to determine the mechanical properties of the titanium foams with different pore sizes. Finally, finite element modeling is attempted to simulate the deformation behaviour and the mechanical properties of the titanium foams. Results indicate that titanium foams with different pore sizes have different geometrical characteristics, which lead to different deformation behaviours of cell walls during compression, resulting in different mechanical properties of titanium foams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane is usually subject to fouling by various organic foulants, such as yeast, protein and sodium alginate during filtration. Backwashing is a common practice to reduce membrane fouling. It is essential to evaluate the effects of backwashing on fouling in order to optimize operational parameters. In this experiment, poly(vinylidene fluoride) (PVDF) membranes were used to filter organic foulants from suspensions in a dead-end stirred cell. Three types of organic foulants including yeast, protein and sodium alginate which were stained with fluorescent dyes before filtration were used with different combinations in the experiments. After filtration, the PVDF membrane was backwashed.

Consequently, a stack of images, instrumental data and sample data were captured from the fouling layers on the PVDF membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software LAS AF. Then, the quality of the images was enhanced for better visualization and a set of quantitative fouling data were derived by using the software code developed by the project team at Deakin University.

This collection contains raw image data of poly(vinylidene fluoride) (PVDF) membrane’s fouling layer when three types of organic foulants present, which are captured by confocal laser scanning microscopy (CLSM) and its software, and the instrumental and sample metadata, the processed image data and the geometrical structure properties of the fouling layer. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed.

This data collection would be useful to evaluate the backwashing efficiency of PVDF membrane in order to optimize frequency and operational conditions of backwashing by membrane materials researchers and water researchers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nose geometry of a hard and brittle metal cutting tool is generally modified in order to avoid the premature failure due to fracture under tensile stresses. While most research findings point to a favourable mechanical load pattern, the possible influence of the shape of the geometry on the thermal fields and the consequent changes in the stressed state of the tool seem to have attained less attention. The present work aims at establishing the thermal behaviour of bevelled tools under varying geometrical and process parameters. Data generated from statistically designed experiments and quick-stop chip samples are coupled to conduct numerical investigations using a mixed finite and boundary element solution to obtain the temperature distribution in bevelled carbide inserts. Due consideration is given to the presence of the stagnation zone and its size and shape. While the cutting forces and temperatures increased owing to the blunt shape of the tool, the possible absence of tensile stresses was found to be the likely effect of a more uniform temperature distribution resulting from a significant plastic contact on the principal flank and the consequent flank heat source. The characteristic low-temperature zones close to the nose of the conventional tool are taken over by the stagnation zone in bevelled tools. © IMechE 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30–40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redoxsensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR devices

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical calculations for some structural and electronic properties of the azide moiety in the nucleoside reverse transcriptase (RT) inhibitor 3′-azido-3′- deoxythymidine (AZT) are reported. These properties, which include geometrical properties in three dimensional space, Hirshfeld charges, electrostatic potential (MEP), vibrational frequencies, and core and valence ionization spectra, are employed to study how the azide group is affected by the presence of a larger fragment. For this purpose, two small but important organic azides, hydrazoic acid and methyl azide, are also considered. The general features of trans Cs configuration for RNNN fragments[1] is distorted in the large AZT bio-molecule. Hirshfeld charge analysis shows charges are reallocated more evenly on azide when the donor group R is not a single atom. Infrared and photoelectron spectra reveal different aspects of the compounds. In conclusion, the electronic structural properties of the compounds depend on the specific property, the local structure and chemical environment of a species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a geometrical model was introduced to improve the hair trapping via a surface contacting the yarn-twisting triangle during ring twisting of two single yarns. The fiber-trapping improvement with the contact surface was analyzed theoretically. Then, single Ne 80 ring cotton yarns were used to produce two-ply yarns under different ring-twisting conditions, namely conventional twisting, dry twisting of yarns with a plane surface, wet twisting of yarns with a plane surface, dry twisting of yarns with a grooved surface, and wet twisting of yarns with a grooved surface. Plied yarn properties, including yarn hairiness, strength, and irregularity, were tested. The Student Newman Keuls (SNK) test and variation analysis were also carried out in the SPSS program to study the effect of different contact surfaces on related yarn properties; the significance level was 0.05 for the SNK test and variation analysis. The hairiness of plied yarns was significantly reduced when twisting with the plane or grooved surface, especially for the wet twisting cases. This corresponds well with our model on improving fiber trapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a fast and accurate method for extracting the scattering parameters of a RF MEMS switch by using its essential parameters. A neural network is developed for parametric modeling of the switch. The essential parameters of the switch are analyzed in terms of its return loss and isolation with variation of its geometrical component values. Simulation results show that the proposed approach can be used to accurately model the RF characteristics of RF-MEMS switches. The results show good agreement between the neural network prediction and electromagnetic simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new spectral clustering method called correlation preserving indexing (CPI), which is performed in the correlation similarity measure space. In this framework, the documents are projected into a low-dimensional semantic space in which the correlations between the documents in the local patches are maximized while the correlations between the documents outside these patches are minimized simultaneously. Since the intrinsic geometrical structure of the document space is often embedded in the similarities between the documents, correlation as a similarity measure is more suitable for detecting the intrinsic geometrical structure of the document space than euclidean distance. Consequently, the proposed CPI method can effectively discover the intrinsic structures embedded in high-dimensional document space. The effectiveness of the new method is demonstrated by extensive experiments conducted on various data sets and by comparison with existing document clustering methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimisation techniques have become more and more important as the possibility of simulating complex mechanical structures has become a reality. A common tool in the layout design of structural parts is the topology optimisation method, which finds an optimum material distribution within a given geometrical design space to best meet loading conditions and constraints. Another important method is shape optimisation, which optimises weight given parametric geometric constraints. In the case of complex shaped parts or elaborate assemblies, for example automobile body structures, shape optimisation is still hard to do; mainly due to the difficulty in translating shape design parameters into meaningful analysis models. Tools like the parametric geometry package SFE CONCEPT are designed to mitigate these issues. Nevertheless, shape methods usually cannot suggest new load path configurations, while topology methods are often confined to single parts. To overcome these limitations the authors have developed a method that combines both approaches into an Integral Shape/Topology Method (IST) that is capable of finding new optimal solutions. This is achieved by an automated optimisation loop and can be applied for both thin walled structures as well as solid 3D geometries. When optimising structures by applying IST, global optimum solutions can be determined that may not be obtained with isolated shape- or topology-optimisation methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well documented in literature that the coronary artery bypass graft is normally fail after a short period of time, due to the development of plaque known as intimal hyperplasia within the graft. Various in vivo and in vitro studies have linked the development of intimal hyperplasia to the abnormal hemodynamics and compliance mismatch. Therefore, it is essential to fully understand the relationship between the hemodynamics inside the coronary artery bypass and its mechanical and geometrical characteristics under the correct physiological conditions. In this work, hemodynamic of the bypass graft is studied numerically. The effect of the host and graft diameters ratio, the angle of anastomosis and the graft configuration on the local flow patterns and the distribution of wall shear stress are examined. The pulsatile waveforms boundary conditions are adopted from in vivo measurement data to study the hemodynamics of composite grafts namely Consequence and Y grafting in terms temporal and spatial distributions of the blood flows. Moreover, various non-Newtonian and Newtonian models of blood have been carried out to examine the numerical simulation of blood flow in stenosis artery. The results are presented and discussed for various operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monotonicity preserving interpolation and approximation have received substantial attention in the last thirty years because of their numerous applications in computer aided-design, statistics, and machine learning [9, 10, 19]. Constrained splines are particularly popular because of their flexibility in modeling different geometrical shapes, sound theoretical properties, and availability of numerically stable algorithms [9,10,26]. In this work we examine parallelization and adaptation for GPUs of a few algorithms of monotone spline interpolation and data smoothing, which arose in the context of estimating probability distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fingertips of human hand play an important role in hand-based interaction with computers. Identification of fingertips' positions in hand images is vital for developing a human computer interaction system. This paper proposes a novel method for detecting fingertips of a hand image analyzing the concept of the geometrical structural information of fingers. The research is divided into three parts: First, hand image is segmented for detecting hand, Second, invariant features (curvature zero-crossing points) are extracted from the boundary of the hand, Third, fingertips are detected. Experimental results show that the proposed approach is promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steel (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional stamping. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process, which allows the manufacture of metal sheet with high strength and limited ductility into complex and weight-optimized components. One major problem in the flexible roll forming of UHSS is the web-warping defect, which is the deviation in height of the web area over the length of the profile. It has been shown that web-warping is strongly dependant to the permanent longitudinal strain formed in the flange of the part. Flexible roll forming is a continuous process with many roll stands, which makes numerical analysis extremely time intensive and computationally expensive. An analytical model of web-warping is therefore critical to improve design efficiency during the early process design stage before FEA is applied. This paper establishes for the first time an analytical model for the prediction of web-warping for the flexible roll forming of a section with variable width. The model is based on evaluating longitudinal edge strain in the flange of the part. This information is then used in combination with a simple geometrical model to investigate the relationship between web-warping and longitudinal strain with respect to process parameters.