926 resultados para Fungi, Fossil
Resumo:
Several fringing coral reefs in Moreton Bay, Southeast Queensland, some 300 km south of the Great Barrier Reef (GBR), are set in a relatively high latitude, estuarine environment that is considered marginal for coral growth. Previous work indicated that these marginal reefs, as with many fringing reefs of the inner GBR, ceased accreting in the mid-Holocene. This research presents for the first time data from the subsurface profile of the mid-Holocene fossil reef at Wellington Point comprising U/Th dates of in situ and framework corals, and trace element analysis from the age constrained carbonate fragments. Based on trace element proxies the palaeo-water quality during reef accretion was reconstructed. Results demonstrate that the reef initiated more than 7,000 yr BP during the post glacial transgression, and the initiation progressed to the west as sea level rose. In situ micro-atolls indicate that sea level was at least 1 m above present mean sea level by 6,680 years ago. The reef remained in "catch-up" mode, with a seaward sloping upper surface, until it stopped aggrading abruptly at ca 6,000 yr BP; no lateral progradation occurred. Changes in sediment composition encountered in the cores suggest that after the laterite substrate was covered by the reef, most of the sediment was produced by the carbonate factory with minimal terrigenous influence. Rare earth element, Y and Ba proxies indicate that water quality during reef accretion was similar to oceanic waters, considered suitable for coral growth. A slight decline in water quality on the basis of increased Ba in the later stages of growth may be related to increased riverine input and partial closing up of the bay due to either tidal delta progradation, climatic change and/or slight sea level fall. The age data suggest that termination of reef growth coincided with a slight lowering of sea level, activation of ENSO and consequent increase in seasonality, lowering of temperatures and the constrictions to oceanic flushing. At the cessation of reef accretion the environmental conditions in the western Moreton Bay were changing from open marine to estuarine. The living coral community appears to be similar to the fossil community, but without the branching Acropora spp. that were more common in the fossil reef. In this marginal setting coral growth periods do not always correspond to periods of reef accretion due to insufficient coral abundance. Due to several environmental constraints modern coral growth is insufficient for reef growth. Based on these findings Moreton Bay may be unsuitable as a long term coral refuge for most species currently living in the GBR.
Resumo:
The practical need to partition the world of viruses into distinguishable, universally agreed upon entities is the ultimate justification for developing a virus classification system. The Author of this Book is Andrew MQ King, Elliot Lefkowitz, Eric B. Carstens, Michael J. Adams Since 1971, the International Committee on Taxonomy of Viruses (ICTV) operating on behalf of the world community of virologists has taken on the task of developing a single, universal taxonomic scheme for all viruses infecting animals (vertebrate, invertebrates, and protozoa), plants (higher plants and algae), fungi, bacteria, and archaea.
Resumo:
Genetic studies are revealing the pathway for RNA-mediated gene silencing. Short RNA molecules are the key, giving sequence specificity for RNA degradation and mediating communication within and between cells; these short RNAs are common to transcriptional and post-transcriptional silencing pathways. The expression of transgenes in plants varies between independent transformants and there are many examples where the transgenic trait is not expressed, or disappears in subsequent generations, despite the presence of the transgene. This loss of a trait, but not of the transgene, has become known as gene silencing and can take two forms, transcriptional or post-transcriptional. As their names imply, transcriptional gene silencing occurs when a transgene is not transcribed, whereas in post-transcriptional gene silencing, the transgene mRNA is produced but degraded before it is translated (reviewed in [1]). Both forms of silencing seem to be the result of inherent mechanisms for protecting plants against mobile or invading DNA — for example, transposable elements or the T-DNA of Agrobacterium — or RNA viruses. Plants are not alone in their capacity for transgene silencing; both forms of silencing occur in flies and fungi, where it is known as RIP or quelling, while nematodes exhibit post-transcriptional silencing, generally referred to as RNA interference (RNAi). A clearer picture of the mechanisms and relationships of the different types of transgene silencing is beginning to emerge from a number of recent studies [2], [3], [4], [5], [6], [7] and [8]. Some of these studies [2], [3], [4] and [5] have enhanced our understanding of the steps within the post-transcriptional silencing pathway, and others [6], [7] and [8] have demonstrated that the two forms of silencing may be mechanistically linked.
Resumo:
Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer-like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer-like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono- and dicotyledonous plants (∼200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots. © 2006 Federation of European Biochemical Societies.
Resumo:
Contact lenses are a successful and popular means to correct refractive error and are worn by just under 700,000 Australians1 and approximately 125 million people worldwide. The most serious complication of contact lens wear is microbial keratitis, a potentially sight-threatening corneal infection most often caused by bacteria. Gram-negative bacteria, in particular pseudomonas species, account for the majority of severe bacterial infections. Pathogens such as fungi or amoebae, which feature less often, are associated with significant morbidity. These unusual pathogens have come into the spotlight in recent times with an apparent association with specific lens cleaning solutions...
Resumo:
The current view of Australian state and national governments about the effects of climate change on agriculture is that farmers – through the adoption of mitigation and adaptation strategies – will remain resilient, and agricultural production will continue to expand. The assumption is that neoliberalism will provide the best ‘free market’ options for climate change mitigation and adaptation in farming. In contrast, we argue that neoliberalism will increase the move towards productivis (‘high-tech’) agriculture – the very system that has caused major environmental damage to the Australian continent. High-tech farming is highly dependent upon access to water and fossil fuels, both of which would appear to be the main limits to production in future decades. Productivist agriculture is a system highly reliant upon fertilizers and fuels that are derived from the petrochemical industry, and are currently increasing in cost as the price of oil increases.
Resumo:
It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.
Resumo:
IODP Expedition 339 drilled five sites in the Gulf of Cadiz and two off the west Iberian margin (November 2011 to January 2012), and recovered 5.5 km of sediment cores with an average recovery of 86.4%. The Gulf of Cadiz was targeted for drilling as a key location for the investigation of Mediterranean outflow water (MOW) through the Gibraltar Gateway and its influence on global circulation and climate. It is also a prime area for understanding the effects of tectonic activity on evolution of the Gibraltar Gateway and on margin sedimentation. We penetrated into the Miocene at two different sites and established a strong signal of MOW in the sedimentary record of the Gulf of Cadiz, following the opening of the Gibraltar Gateway. Preliminary results show the initiation of contourite deposition at 4.2–4.5 Ma, although subsequent research will establish whether this dates the onset of MOW. The Pliocene succession, penetrated at four sites, shows low bottom current activity linked with a weak MOW. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. The Quaternary succession shows a much more pronounced phase of contourite drift development, with two periods of MOW intensification separated by a widespread unconformity. Following this, the final phase of drift evolution established the contourite depositional system (CDS) architecture we see today. There is a significant climate control on this evolution of MOW and bottom-current activity. However, from the closure of the Atlantic–Mediterranean gateways in Spain and Morocco just over 6 Ma and the opening of the Gibraltar Gateway at 5.3 Ma, there has been an even stronger tectonic control on margin development, downslope sediment transport and contourite drift evolution. The Gulf of Cadiz is the world's premier contourite laboratory and thus presents an ideal testing ground for the contourite paradigm. Further study of these contourites will allow us to resolve outstanding issues related to depositional processes, drift budgets, and recognition of fossil contourites in the ancient record on shore. The expedition also verified an enormous quantity and extensive distribution of contourite sands that are clean and well sorted. These represent a relatively untapped and important exploration target for potential oil and gas reservoirs.
Resumo:
Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.
Resumo:
Mycotoxins – from the Greek μύκης (mykes, mukos) “fungus” and the Latin (toxicum) “poison” – are a large and growing family of secondary metabolites and hence natural products produced by fungi, in particular by molds (1). It is estimated that well over 1,000 mycotoxins have been isolated and characterized so far, but this number will increase over the next few decades due the availability of more specialized analytical tools and the increasing number of fungi being isolated. However, the most important classes of fungi responsible for these compounds are Alternaria, Aspergillus (multiple forms), Penicillium, and Stachybotrys. The biological activity of mycotoxins ranges from weak and/or sometimes positive effects such as antibacterial activity (e.g. penicillin derivatives derived from Penicillium strains) to strong mutagenic (e.g. aflatoxins, patulin), carcinogenic (e.g. aflatoxins), teratogenic, neurotoxic (e.g. ochratoxins), nephrotoxic (e.g. fumonisins, citrinin), hepatotoxic, and immunotoxic (e.g. ochratoxins, diketopiperazines) activities (1, 2), which are discussed in detail in this volume.
Resumo:
Global pressures of burgeoning population growth and consumption are threatening efforts to reduce negative environmental pressures associated with development such as atmospheric, land and water pollution. For example, the world’s population is now growing at over 70 million per year or 1 billion per decade (Brown, 2007), increasing from 3.5 billion in 1970, to 5 billion in 1990, to 7 billion by 2010 (United Nations, 2002). In 1990 only 13 percent of the global population lived in cities, while in 2007 more than half did. More than 60 percent of the global population lives within 100 kilometers of the coastline (World Resources Institute, 2005) and nearly all of the population growth hereon is forecast to happen in developing countries (Postel, 1999). Future levels of stress on the global environment are therefore likely to increase if current trends are used for forecasting, which is particularly challenging as scientists are already observing significant signs of degradation and failure in environmental systems. For example, the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2007) provided an nequivocal link between climate change and current human activities, in particular: the burning of fossil fuels; deforestation and land clearing; the use of synthetic greenhouse gases; and decomposition of wastes from landfill. The UK Stern Review concluded that within our lifetime there is between a 77 to 99 percent chance (depending on the climate model used) of the global average temperature rising by more than 2 degrees Celsius (Stern, 2006), with a likely greenhouse gas concentration in the atmosphere of 550 parts per million (ppm) or more by around 2100.