967 resultados para Function approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.

We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was conducted to estimate the error when the flat-flux approximation is used to compute the resonance integral for a single absorber element embedded in a neutron source.

The investigation was initiated by assuming a parabolic flux distribution in computing the flux-averaged escape probability which occurs in the collision density equation. Furthermore, also assumed were both wide resonance and narrow resonance expressions for the resonance integral. The fact that this simple model demonstrated a decrease in the resonance integral motivated the more detailed investigation of the thesis.

An integral equation describing the collision density as a function of energy, position and angle is constructed and is subsequently specialized to the case of energy and spatial dependence. This equation is further simplified by expanding the spatial dependence in a series of Legendre polynomials (since a one-dimensional case is considered). In this form, the effects of slowing-down and flux depression may be accounted for to any degree of accuracy desired. The resulting integral equation for the energy dependence is thus solved numerically, considering the slowing down model and the infinite mass model as separate cases.

From the solution obtained by the above method, the error ascribable to the flat-flux approximation is obtained. In addition to this, the error introduced in the resonance integral in assuming no slowing down in the absorber is deduced. Results by Chernick for bismuth rods, and by Corngold for uranium slabs, are compared to the latter case, and these agree to within the approximations made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let PK, L(N) be the number of unordered partitions of a positive integer N into K or fewer positive integer parts, each part not exceeding L. A distribution of the form

Ʃ/N≤x PK,L(N)

is considered first. For any fixed K, this distribution approaches a piecewise polynomial function as L increases to infinity. As both K and L approach infinity, this distribution is asymptotically normal. These results are proved by studying the convergence of the characteristic function.

The main result is the asymptotic behavior of PK,K(N) itself, for certain large K and N. This is obtained by studying a contour integral of the generating function taken along the unit circle. The bulk of the estimate comes from integrating along a small arc near the point 1. Diophantine approximation is used to show that the integral along the rest of the circle is much smaller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic forces acting on a solid particle in a viscous, incompressible fluid medium at low Reynolds number flow is investigated mathematically as a prerequisite to the understanding of transport processes in two-phase flow involving solid particles and fluid. Viscous interaction between a small number of spherical particles and continuous solid boundaries as well as fluid interface are analyzed under a “point-force” approximation. Non-spherical and elastic spherical particles in a simple shear flow area are then considered. Non-steady motion of a spherical particle is briefly touched upon to illustrate the transient effect of particle motion.

A macroscopic continuum description of particle-fluid flow is formulated in terms of spatial averages yielding a set of particle continuum and bulk fluid equations. Phenomenological formulas describing the transport processes in a fluid medium are extended to cases where the volume concentration of solid particles is sufficiently high to exert an important influence. Hydrodynamic forces acting on a spherical solid particle in such a system, e.g. drag, torque, rotational coupling force, and viscous collision force between streams of different sized particles moving relative to each other are obtained. Phenomenological constants, such as the shear viscosity coefficient, and the diffusion coefficient of the bulk fluid, are found as a function of the material properties of the constituents of the two-phase system and the volume concentration of solid. For transient heat conduction phenomena, it is found that the introduction of a complex conductivity for the bulk fluid permits a simple mathematical description of this otherwise complicated process. The rate of heat transfer between particle continuum and bulk fluid is also investigated by means of an Oseen-type approximation to the energy equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental measurements of rate of energy loss were made for protons of energy .5 to 1.6 MeV channeling through 1 μm thick silicon targets along the <110>, <111>, and <211> axial directions, and the {100}, {110}, {111}, and {211} planar directions. A .05% resolution automatically controlled magnetic spectrometer was used. The data are presented graphically along with an extensive summary of data in the literature. The data taken cover a wider range of channels than has previously been examined, and are in agreement with the data of F. Eisen, et al., Radd. Eff. 13, 93 (1972).

The theory in the literature for channeling energy loss due to interaction with local electrons, core electrons, and distant valence electrons of the crystal atoms is summarized. Straggling is analyzed, and a computer program which calculates energy loss and straggling using this theory and the Moliere approximation to the Thomas Fermi potential, VTF, and the detailed silicon crystal structure is described. Values for the local electron density Zloc in each of the channels listed above are extracted from the data by graphical matching of the experimental and computer results.

Zeroth and second order contributions to Zloc as a function of distance from the center of the channel were computed from ∇2VTF = 4πρ for various channels in silicon. For data taken in this work and data of F. Eisen, et al., Rad. Eff. 13, 93 (1972), the calculated zeroth order contribution to Zloc lies between the experimentally extracted Zloc values obtained by using the peak and the leading edge of the transmission spectra, suggesting that the observed straggling is due both to statistical fluctuations and to path variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).

Part I

A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.

Part II

The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.

Part III

Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.

Part IV

The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.

For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.

The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.

Part V

For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.

The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.

Part II

A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.

The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.

Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insula is a mammalian cortical structure that has been implicated in a wide range of low- and high-level functions governing one’s sensory, emotional, and cognitive experiences. One particular role of this region is considered to be processing of olfactory stimuli. The ability to detect and evaluate odors has significant effects on an organism’s eating behavior and survival and, in case of humans, on complex decision making. Despite such importance of this function, the mechanism in which olfactory information is processed in the insula has not been thoroughly studied. Moreover, due to the structure’s close spatial relationship with the neighboring claustrum, it is not entirely clear whether the connectivity and olfactory functions attributed to the insula are truly those of the insula, rather than of the claustrum. My graduate work, consisting of two studies, seeks to help fill these gaps. In the first, the structural connectivity patterns of the insula and the claustrum in a non-human primate brain is assayed using an ultra-high-quality diffusion magnetic resonance image, and the results suggest dissociation of connectivity — and hence function — between the two structures. In the second study, a functional neuroimaging experiment investigates the insular activity during odor evaluation tasks in humans, and uncovers a potential spatial organization within the anterior portion of the insula for processing different aspects of odor characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Present experimental data on nucleon-antinucleon scattering allow a study of the possibility of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be made of the general behavior of the elastic phase shifts without resorting to theoretical derivation. A phase transition which separates nucleons from antinucleons is found at about 280 MeV in the approximation of the second virial coefficient to the free energy of the gas.

Part II

The parton model is used to derive scaling laws for the hadrons observed in deep inelastic electron-nucleon scattering which lie in the fragmentation region of the virtual photon. Scaling relations are obtained in the Bjorken and Regge regions. It is proposed that the distribution functions become independent of both q2 and ν where the Bjorken and Regge regions overlap. The quark density functions are discussed in the limit x→1 for the nucleon octet and the pseudoscalar mesons. Under certain plausible assumptions it is found that only one or two quarks of the six types of quarks and antiquarks have an appreciable density function in the limit x→1. This has implications for the quark fragmentation functions near the large momentum boundary of their fragmentation region. These results are used to propose a method of measuring the proton and neutron quark density functions for all x by making measurements on inclusively produced hadrons in electroproduction only. Implications are also discussed for the hadrons produced in electron-positron annihilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evoked response, a signal present in the electro-encephalogram when specific sense modalities are stimulated with brief sensory inputs, has not yet revealed as much about brain function as it apparently promised when first recorded in the late 1940's. One of the problems has been to record the responses at a large number of points on the surface of the head; thus in order to achieve greater spatial resolution than previously attained, a 50-channel recording system was designed to monitor experiments with human visually evoked responses.

Conventional voltage versus time plots of the responses were found inadequate as a means of making qualitative studies of such a large data space. This problem was solved by creating a graphical display of the responses in the form of equipotential maps of the activity at successive instants during the complete response. In order to ascertain the necessary complexity of any models of the responses, factor analytic procedures were used to show that models characterized by only five or six independent parameters could adequately represent the variability in all recording channels.

One type of equivalent source for the responses which meets these specifications is the electrostatic dipole. Two different dipole models were studied: the dipole in a homogeneous sphere and the dipole in a sphere comprised of two spherical shells (of different conductivities) concentric with and enclosing a homogeneous sphere of a third conductivity. These models were used to determine nonlinear least squares fits of dipole parameters to a given potential distribution on the surface of a spherical approximation to the head. Numerous tests of the procedures were conducted with problems having known solutions. After these theoretical studies demonstrated the applicability of the technique, the models were used to determine inverse solutions for the evoked response potentials at various times throughout the responses. It was found that reliable estimates of the location and strength of cortical activity were obtained, and that the two models differed only slightly in their inverse solutions. These techniques enabled information flow in the brain, as indicated by locations and strengths of active sites, to be followed throughout the evoked response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general class of single degree of freedom systems possessing rate-independent hysteresis is defined. The hysteretic behavior in a system belonging to this class is depicted as a sequence of single-valued functions; at any given time, the current function is determined by some set of mathematical rules concerning the entire previous response of the system. Existence and uniqueness of solutions are established and boundedness of solutions is examined.

An asymptotic solution procedure is used to derive an approximation to the response of viscously damped systems with a small hysteretic nonlinearity and trigonometric excitation. Two properties of the hysteresis loops associated with any given system completely determine this approximation to the response: the area enclosed by each loop, and the average of the ascending and descending branches of each loop.

The approximation, supplemented by numerical calculations, is applied to investigate the steady-state response of a system with limited slip. Such features as disconnected response curves and jumps in response exist for a certain range of system parameters for any finite amount of slip.

To further understand the response of this system, solutions of the initial-value problem are examined. The boundedness of solutions is investigated first. Then the relationship between initial conditions and resulting steady-state solution is examined when multiple steady-state solutions exist. Using the approximate analysis and numerical calculations, it is found that significant regions of initial conditions in the initial condition plane lead to the different asymptotically stable steady-state solutions.